SUPPLEMENTAL DATA REPORT

Sheldon Meadow

20 Hancock Street 1139 West Street

Wrentham, Massachusetts

Prepared by:
Howard Stein Hudson
114 Turnpike Road, Suite 2C
Chelmsford, MA 01824

April 2022

Table of Contents

Existing Conditions 1
Proposed Conditions 1
Zoning 3
Dimensional Requirements 3
Senior Living Community - Special Permit Criteria 4
Hydrology 9
Standard 1. No New Untreated Discharges 9
Standard 2. Post-development Peak Discharge Rates Not to Exceed Pre-development Peak Discharge
Rates 10
Standard 3. Minimize or Eliminate Loss of Annual Recharge to Groundwater 11
Standard 4. Stormwater Management System to Remove 80\% of the Average Annual Load of Total Suspended Solids (TSS) 13
Standard 5. Land Uses with Higher Potential Pollutant Loads 20
Standard 6. Stormwater Discharges to Critical Areas 20
Standard 7. Redevelopment Projects 20
Standard 8. Control Construction-related Impacts 20
Standard 9. Long-Term Operation and Maintenance Plan. 20
Standard 10. No Illicit Discharges 20
Appendix A - Operation and Maintenance Plan 21
Infiltration Basin 22
Deep Sump Hooded Catch Basin 24
ACF Rain Guardian Bunker 25
ACF Rain Guardian Foxhole 26
Subsurface Infiltration System 27
Stormtech Isolator Row Plus 28
Rip Rap and Swale Areas 29
Downstream Defender 30
Appendix B - Erosion and Sediment Control Notes and General Construction Sequence 31
Erosion and Sediment Control Notes 32
General Construction Sequence 33
Appendix C - ACF Rain Guardian Supplemental Information 34
Appendix D - ADS Stormtech Isolator Row TSS Removal Rates 35
Appendix E - Downstream Defender Supplemental Information 36
Appendix F - Locus Map 37
Appendix G - Pre and Post Drainage Maps 38
Appendix H - HydroCAD, Stage Storage and Hydrographs 39
Appendix I-Mounding Calculations 40

Existing Conditions

The subject site for the Sheldon Meadow Development exists as the eastern portion of property located at 1139 West Street and 20 Hancock Street, Wrentham, MA. The subject site is considered a single lot in common ownership, however for the purposes of the Sheldon Meadow Development, this report will focus on a portion of the 20 Hancock Street portion of the property and 1139 West Street Property with frontage on Hancock Street.

The property located totals approximately 20.16 acres in the R-87 Agricultural and Residential Zoning District. The parcel is developed by a single family home that is currently a rental property. The remainder of the property consists of field and patches of trees and shrubs that turn into dense forest as it approaches the wetlands and perennial stream to the west. The site is bounced to the north by an intermittent stream and to the south by single family residences.

Throughout the site, the topography generally slopes from northeast to southwest where a bordering vegetated wetland and a perennial stream exist. A portion of the front of the existing site flows to the abutter, directly southeast of the existing home on 20 Hancock Street. In addition, a portion of the southeastern edge of the property flows to the abutting property along the southeast edge of the site.

The existing parcel entirely drains to three analysis points representing the wetland system to the southwest of the site; the abutter along the southeastern property line; and the abutter to the southeast of the frontage on Hancock Street.

Soil conditions on site are characterized as Sudbury fine sandy loam which has a hydrologic soil group of B. Soil testing has been performed and has confirmed these soil groups.

The site currently services water and electric utility via the Hancock Street Right of Way. There is not believed to be the availability of gas or sewer services within the Hancock Street Right of Way.

Proposed Conditions

The Sheldon Meadow Development proposes to construct 16 single family homes within a Senior Living Community (SLC), with an internal, formal greenspace and paved walking loop and with an exterior accessible walking loop to add to the existing wooded trails that navigate through the wooded, natural areas adjacent to the proposed development. The exterior walking loop is proposed to be six (6) feet wide to aide in two-way walking pedestrian traffic and is also depicted with benches every 150 ' \pm apart to increase the usability.

SUPPLEMENTAL DATA REPORT
Sheldon Meadow Development - 20 Hancock Street \& 1139 West Street
April 2022

The single-family homes have been located and designed as two clusters to provide a communal area between the clusters of homes. Both clusters feature entrances on the courtyard side of the units which enter the interconnected walkways. This allows direct connections from each unit to the communal spaces in the center of the development. The road for Sheldon Meadow wraps around the exterior of the clusters, where it closes a loop before exiting to the Hancock Street intersection.

The road has been designed as 22^{\prime} wide, per SLC requirements, and totals approximately $1,771 \mathrm{LF}$. The exterior of the road is proposed to be curbed while the interior is proposed as a 10 pervious parking shoulder. The use of the pervious parking shoulder will allow for the reduction in overall runoff, while still allowing adequate parking on site.

Electric, cable, and communications service as well as water service will be provided through the available connections within Hancock Street. Sewer will be serviced through an on-site community septic system. The septic system is proposed to be located beneath the centralized green space within the community.

The proposed stormwater management utilizes treatment BMP's, grassed swales, subsurface infiltration systems, as well as an infiltration basin on the southwestern side of the site. Providing the low point on the southwestern edge of the site most closely mimics the existing topographical conditions and allows the site to remain as close to existing as possible. The main entry drive is proposed to be superelevated towards the northwest, where the stormwater will enter a catch basin to be treated, and flow to a subsurface infiltration system. The loop will be superelevated towards the outside of the road, entering the stormwater management system via curb cuts, or catch basins. The stormwater management system runs along the exterior of the road in the form of stone lined grassed swales leading to headwalls with subsurface piping. Stormwater will be piped toward proprietary treatment devices prior to be discharged to the infiltration basin. The infiltration basin will accept stormwater on site, further treat the stormwater, infiltrate, and release excess stormwater via an overflow weir. A portion of the proposed loop will drain to a catch basin which is connected to a subsurface infiltration system within the center common of the site. This subsurface infiltration system will treat, infiltrate, and release excess stormwater via an overflow grate within the center common. Discharged stormwater from the subsurface infiltration system will continue to flow southwest toward the infiltration basin where it will be captured, further treated, and infiltrated within the larger basin.

Using these series of treatment BMP's, swales, and the infiltration basin, the stormwater management system is designed to capture, treat, and infiltrate stormwater as required by the Massachusetts Stormwater Standards, as well as the local Wrentham Board of Health Stormwater Regulations. See the hydrology section of this report for further detail and information.

Zoning

The proposed parcel will remain within the R-87 Agricultural and Residential Zoning District. Within this district, a Senior Living Community (SLC) is approvable via a Site Plan and Special Permit Application to the Planning Board. This section with demonstrate compliance with appropriate dimensional requirements and special permit criteria as it relates to Section 13.5 (Senior Living Community) of the Wrentham Zoning Bylaws.

Dimensional Requirements

While the parcel exists within the R-87 Agricultural and Residential Zoning District, the SLC Special Permit allows adjusted dimensional requirements from the R-87 Agricultural and Residential Zoning District.

20 Hancock Street, Wrentham, MA
R-87 Agricultural and Residential
Proposed Use: Senior Living Community

Dimensional Requirements (R-87 Agricultural and Residential) (SLC)	Required	Proposed
Lot Area (SLC)	871,200 SF (20 AC)	878,327 SF (20.1 AC)
Continuous Lot Frontage (SLC)	100 min.	134' \pm
Minimum Front Yard (SLC)	$30^{\prime} \mathrm{min}$.	$221 \pm$
Minimum Side Yard (SLC)	$30^{\prime} \mathrm{min}$.	54' \pm
Minimum Rear Yard (SLC)	30' min.	1,810' \pm
Maximum Building Coverage (SLC)	35\% max.	3.6\%
Minimum Open Space (SLC)	30\% min.	40\%
Maximum Stories (SLC)	2 max.	2
Maximum Building Height (SLC)	28' max.	23'-8"
Maximum Density (SLC)	4 Units/AC	0.80 Units/AC
Average Distance Between (SLC)	15	25.3 '
Parking Requirements	Required	Proposed
Number of Parking Spaces	40 Spaces	32 Garage Spaces 29 Surface Spaces 61 Total Spaces

OPEN SPACE CALCULATION

Total Site Area $=878,327 \mathrm{SF}$
Total Wetland Area $=445,084$ SF
Total Non-Usable Space $=145,385 \mathrm{SF}$
Required Open Space $=(0.30) * 878,327 \mathrm{SF}=263,498 \mathrm{SF} *$
*Per the requirements of the SLC, not more than 25% of the required common open space may be wetland.'
Allowable Wetland Area $=(0.25) * 263,498 \mathrm{SF}=65,875 \mathrm{SF}$
Upland Open Space $=878,327 \mathrm{SF}-(445,084 \mathrm{SF}+145,385 \mathrm{SF})=287,858 \mathrm{SF}$
Total Open Space $=287,858+65,875=353,733$ SF
Open Space $\%=353,733$ SF $/ 878,327 \mathrm{SF}=40 \%$

Senior Living Community - Special Permit Criteria

Per Wrentham Bylaws Section 13.5.4 - Basic Requirements

A. A Senior Living Community Shall Comply with the following density regulations: 4 Units/Acre

As shown within the Zoning Table, the Sheldon West project has an overall density of 0.80 Units/Acre.
B. Maximum building coverage shall not exceed thirty-five percent (35\%) of the lot area for new construction or expansion of existing structures.

The proposed building coverage on site totals 3.6%.
C. For single family, cottage dwellings, duplexes or triplex style dwellings, the minimum setback shall be thirty feet (30^{\prime}) from all property lines in the Residential Districts, unless the Planning Board determines that a reduced setback is necessary to achieve the purposes of this section and will not have a detrimental impact on the neighborhood.

All units on site are proposed as single family. All proposed buildings remain at least thirty feet from all property lines.
D. No dwelling unit in a SLC shall have more than two bedrooms.

No dwelling unit is proposed to have more than two (2) bedrooms.
E. The minimum distance between buildings in any SLC shall be fifteen feet (15^{\prime}).

The minimum distance between buildings proposed on site is equal or more than 15'. Many of the buildings maintain approximately 20 ' or more of separation.
F. The minimum common open space in the development shall be thirty percent (30\%) of the lot area and not more than twenty-five percent (25%) of the required minimum common open space shall consist of wetlands (as defined in MGL c.131, s40). The upland open space shall be contiguous and usable by residents of the development. A permanent Conversation Restriction running to or enforceable by the Town shall be recorded for the common open space area and shall include restrictions that the land be retained in perpetuity for conservation or passive recreation.

See Dimensional Requirements section for calculation of Common Open Space.
G. All SLC dwelling units shall be subject to an age restriction described in a deed, deed rider, restrictive covenant, or other document approved by the Planning Board that shall be recorded at the Registry of Deeds and/or Land Court. The age restriction shall limit occupancy of dwelling units to at least one individual age fifty-five (55) or over ad their spouse/partner and may provide for time-limited guest visitation rights of not more than one (1) month per year. The restriction, if the Planning Board so approved and specifies in the special permit, may authorize special exceptions that allow persons of all ages to live in a dwelling unit together with a senior resident for purposes such as care of a senior in ill health or enabling seniors to fulfill legal responsibilities of guardianship or custody. The special permit including age restriction shall run with the land in perpetuity and shall be enforceable by the Town and/or any owner(s) of the SLC dwelling units. In the event of the death of a qualifying owner or occupant(s) of a dwelling unit, or foreclosure or other involuntary transfer of a unit within the SLC, a one-year exemption to the restriction shall be allowed for the transfer of the unit to another eligible occupant.

This requirement is understood and agreeable to the applicant.
H. Minimum off-street parking requirements shall comply with Article 6.4, except as modified by the following standards:
a. Single Family or Cottage style dwellings: two (2) spaces per unit
b. Guest parking: one (1) space per two (2) units or three (3) beds, as applicable.
I. Per these requirements, the project is subject to the requirement of 40 parking spaces. The project proposes a total of 32 garage spaces and 29 surface spaces for a total of 61 proposed parking spaces on site.
J. All streets within a SLC shall be private, and all sewerage, drainage facilities and utilities shall be designed and constructed in compliance with the Town of Wrentham Subdivision Rules and Regulations, except as modified by the following standards:
a. The minimum width of paved roadways shall be twenty-two feet (22').
b. There shall be a five-foot (5^{\prime}) sidewalk installed along one side of the roadway.

The roadway within the proposed SLC is shown at 22' wide, with an additional 10' wide pervious paver shoulder and a 6 , sidewalk along the exterior loop of the roadway with direct connection to the intersection of Hancock Street.
K. A SLC may have one (1) free standing sign at each principal access to the development from a public way, indicating the name and/or street address of the SLC. Such sign shall not exceed twelve (12) square feet in area per side or four (4) feet in height. The provisions of Article 18 shall also apply to signage within the SLC.

Signage has not been proposed at this time. Proposed signage will be designed and addressed at a later date further along in the permitting process and will meet the requirements of the SLC.
L. A SLC shall have an amenity structure designed to allow for a variety of passive and active recreational activities that support the residents of the SLC. Such uses that may be considered are community program spaces, fitness/therapeutic space, educational, recreational and accessory space; areas for neighborhood meetings and event space; and any other amenities and opportunities that are intended to create and promote an integrated neighborhood type environment.

A community amenity space has been provided within the common green area on the interior of the proposed units. This space can be utilized for a number of different activities and includes an interconnected walking loop to each unit, as well an open green space to be utilized as desired by the residents. The project is also serviced by a 6 ' wide meandering sidewalk with benches placed intermittently at the outside of the project allowing a longer, uninterrupted loop at the edge of the wetland and forested areas for the use of the residents.

Per Wrentham Bylaws Section 13.5.8- Development Standards

As part of the Planning Board's special permit review process, the Board shall evaluate the proposed Senior Living Community (SLC) for conformance to the following minimum design standards.
A. Architectural planning and design shall incorporate energy efficient design techniques, such as natural heating and cooling systems, use of sun and wind energy generation systems, and so forth.

The architectural design of the single-family homes of the development will incorporate solar panel ready roof design for future installation of solar panels by unit owners. Also, all habitable rooms will have operable double hung windows to take advantage of natural cooling/ventilation at the unit owners' discretion. The building envelope will be high efficiency so that mechanical system design loads can be reduced and be more energy efficient. The mechanical heating and cooling systems will be high efficiency electric heat pump split systems in conjunction with electric high efficiency water heaters.

Also, exterior bollard style pedestrian lighting for the interior green space is a solar charged light fixture.
B. Structures located near the project property lines shall be designed and located in a manner that reflects consistency and compatibility with neighboring areas, and shall include appropriate use of building density, heights, and design to minimize intrusion on neighbors.

Though the structures are not near the property lines due to the nature of the development, the new homes being constructed could possibly be seen by adjacent abutting properties, so attention has been given to the design of the new homes as if they were close to the adjacent property lines. All the new homes are over 50' from adjacent property lines. The new homes being built are consistent with the existing neighborhood in building footprint as well as in building height. The design of the roof lines is consistent with the surrounding neighborhood incorporating a main gable roof, gable and shed dormers, asphalt shingle roofs, horizontal lap and shake siding and double hung windows. Options are provided to allow for diversity within the development and provide visual interest. Providing (3) garage door styles and (3) exterior siding color options also provide further design diversity within the development. Most importantly, the development is treating the new homes as having (2) front elevations one front elevation facing the ring road and the adjacent abutters as well as one front elevation facing inward to the "village green". The architectural design will not detract from the current feel of the surrounding neighborhood as this development enhances, reflects and is consistent with the surrounding existing neighborhood.
C. Outdoor recreation or gathering areas, particularly those that may generate significant noise and/or light and glare, shall be located to minimize intrusion on neighboring properties.

The outdoor gathering area is located away from all property lines within the center of all the units, proposed as a "village green". All noise, light, or glare generated from this area will be shielded by the proposed structures. There is also a meandering perimeter sidewalk along the ring road of the development that allows for pedestrian walking without having to cross individual home driveways making for an uninterrupted walk within benches placed intermittently along the path. This increases the safety of pedestrians walking in and around the development. Lighting is provided along the ring road that are full cut off light fixtures so that there will not be any light spillage or glare onto adjacent abutting properties. These measures minimize any intrusion on neighboring properties.
D. Structures shall be clustered to reduce site disturbance and protect open spaces, natural and environmentally sensitive areas.

The proposed new homes are clustered around an internal "village green" common area to minimize site disturbance and protect open spaces on the site. The site plan and building placement respects natural land features and environmentally sensitive areas of the site.
E. Site design shall limit large grass areas and provide adequate access to shared amenities.

The site has been designed utilizing interior sidewalks within the formal greenspace and an exterior walking loop to interconnect and create universal accessibility to all areas on site. Large grass areas are avoided and the natural environment is celebrated by clustering the project and limiting the land disturbance to allow for significant existing natural areas to be preserved by this development.
F. Building design shall avoid use of long unbroken facades, and shall include use of balconies, offset wall, trellises and other design elements to provide visual interest.

The structures have been designed with several gables to break up long facades on both the exterior facing and interior faces of the structure. Patios and porches have also been incorporated into the design to provide visual interest to the exterior of the building.
G. Building design, colors and materials shall generally correspond to the natural setting of the project site and promote the appearance of the Town's New England character.

The buildings have been designed with the New England aesthetic in mind utilizing colors such as brown, blue, and gray with vinyl shake siding, and vinyl lap siding. The visual design also promotes the New England aesthetic by incorporating gables to the structure.
H. Walking trails shall be accessible to all abilities and installed throughout the project.

An exterior walking loop has been proposed to meander around the exterior of the site. This walking loop, as well as the interior sidewalks interconnecting the units, has been proposed to be paved and adhere to all current ADA requirements.
I. The development shall be served by public water.

This development will be served by public water, accessed from the Hancock Street Right of Way.

Hydrology

Standard 1. No New Untreated Discharges

The Massachusetts Stormwater Handbook requires that the project demonstrates that no new stormwater conveyances (e.g. outfalls) discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The proposed project will not discharge stormwater directly to, or cause erosion in, wetlands or water of the Commonwealth and will treat stormwater prior to discharge or infiltration.

The infiltration basin is adjacent to a wetland and has been proposed with an outlet weir to allow treated discharge to flow from the pond to the wetland. All outlets have been designed to incorporate rip rap to minimize or eliminate erosion to wetlands.

Storm Event	2-inch	2-year	10-year	50-year	100-year
AP1 Peak Discharge (cfs)	0.05	0.48	1.61	7.71	10.34

Standard 2. Post-development Peak Discharge Rates Not to Exceed Pre-development Peak Discharge Rates

Post-development peak discharge rates do not exceed the pre-development peak discharge rates and total runoff volumes for all storm events. The proposed condition reduces rates by collecting and controlling the stormwater runoff within the stormwater management system.

Storm Event	2-inch	2-year	10-year	50 -year	100 -year
Pre-development rates (cfs) AP1 to Wetland System Volume (cf)	0.03	0.76	3.15	8.24	11.59
Post-development rates (cfs) AP1	0.05	0.48	1.61	7.71	10.34
to Wetland System	320	2,283	8,054	25,098	37,942
Volume (cf)	$\mathbf{3 2 , 9 5 0}$	42,343	58,515		
Rate reductions (cfs)	$\mathbf{0 . 0 2}$	$\mathbf{- 0 . 2 8}$	$\mathbf{- 1 . 5 4}$	$\mathbf{- 0 . 5 3}$	$\mathbf{- 1 . 2 5}$
Volume Reductions (cf)	$\mathbf{- 4 1 4}$	$\mathbf{- 3 7 4 5}$	$\mathbf{- 9 , 8 9 6}$	$\mathbf{- 1 7 , 2 4 5}$	$\mathbf{- 2 0 , 5 7 3}$

Storm Event	2-inch	2-year	10 -year	50 -year	100 -year
Pre-development rates (cfs) AP2 to Abutter	0.03	0.62	2.29	5.66	7.84
Volume (cf)	648	4,218	11,807	26,912	36,798
Post-development rates (cfs) AP2	0.02	0.40	1.34	3.15	4.30
to Abutter	311	$\mathbf{1 , 6 8 8}$	4,469	9,864	13,352
Volume (cf)	$\mathbf{- 0 . 0 1}$	$\mathbf{- 0 . 2 2}$	$\mathbf{- 0 . 9 5}$	$\mathbf{- 2 . 5 1}$	$\mathbf{- 3 . 5 4}$
Rate reductions (cfs)	$\mathbf{- 3 3 7}$	$\mathbf{- 2 , 5 3 0}$	$\mathbf{- 7 , 3 3 8}$	$\mathbf{- 1 7 , 0 4 8}$	$\mathbf{- 2 3 , 4 4 6}$

Storm Event	2-inch	2-year	10 -year	50 -year	100 -year
Pre-development rates (cfs) AP3 to Abutter Depression Volume (cf)	0.00	0.05	0.86	2.04	2.76
Post-development rates (cfs) AP3 to Abutter Depression Volume (cf)	0.00	0.0	0.64	1.73	2.41
Rate reductions (cfs)	0	0	934	3,718	5,701
Volume Reductions (cf)	$\mathbf{0 . 0}$	$\mathbf{- 0 . 0 5}$	$\mathbf{- 0 . 2 2}$	$\mathbf{- 0 . 3 1}$	$\mathbf{- 0 . 3 5}$
$\mathbf{- 0}$	$\mathbf{- 2 8}$	$\mathbf{- 1 3 0}$	$\mathbf{7 7}$	$\mathbf{2 7 6}$	

*AP3 sees negligible increase in 50-Year and 100-Year 24-Hour Storm Events totaling 2\% and 5%, respectively. Overall, there is a negligible decrease in ponding elevation on abutting property by 0.01 ' in the 100 -Year Storm.

Standard 3. Minimize or Eliminate Loss of Annual Recharge to Groundwater

Groundwater recharge will be accomplished using the surface infiltration practices. As shown in the table summary for Standard 2, the project decreases the total volume and runoff for all storm events. All storms have a significant decrease over the existing condition for both volume and rate of runoff. This reduction in volume is generated by collecting and infiltrating all the impervious surfaces created on site.

RECHARGE VOLUME REQUIREMENT

- $\mathrm{Rv}=\mathrm{F} x$ impervious area
- $\mathrm{Rv}=$ Required Recharge Volume, expressed in Ft3, cubic yards, or acre-feet
- F= Target Depth Factor associated with each Hydrologic Soil Group
- Impervious Area = pavement and rooftop area on site

RECHARGE VOLUME FOR THE ENTIRE SITE

Hydrologic Group Volume to Recharge (x Total Impervious Area)

A: 0.60 inches of runoff
No A soils were found on site
B: 0.35 inches of runoff
0.35 in x ($1 \mathrm{ft} / 12 \mathrm{in}$) $\mathrm{x} 108,116 \mathrm{sf}=3,154 \mathrm{cf}$

C: 0.25 inches of runoff
No C soils were found on site
D: 0.10 inches of runoff
No D soils were found on site

- Total Volume Provided Pond P1: 20,179 CF
- Total Volume Provided in Subsurface Infiltration System 1 (SIS1): 2,620 CF
- Total Volume Provided in Subsurface Infiltration System 2 (SIS2): 3,670 CF

Capture Area Adjustment

Total Recharge volume required: 3,154 cf Impervious areas that drain to recharge areas: 476 SF
Total Site Impervious/Impervious to Infiltration= 108,116 SF/ 107,640 SF = 1.004
Total adjusted recharge needed $=3,167 \mathrm{CF}$

Volumes and surface area for ponds acquired from HydroCAD stage storage tables. These tables are attached as an appendix at the end of the HydroCAD analysis.

TOTAL SITE RECHARGE PROVIDED $=\mathbf{2 6}, 469$ CF RECHARGE VOLUME (BELOW THE OUTLET) > 3,167 CF REQUIRED
 DRAWDOWN REQUIREMENT

DRAWDOWN WITHIN 72 HOURS

- Pond P1: $20,179 \mathrm{cf} /\left[(8.27 \mathrm{in} / \mathrm{hr})^{*}(1 \mathrm{ft} / 12 \mathrm{in})^{*}(8,532 \mathrm{sf})\right]=3.43$ hours <72 hours, OK
- Pond SIS1: $2,620 \mathrm{cf} /\left[(8.27 \mathrm{in} / \mathrm{hr})^{*}(1 \mathrm{ft} / 12 \mathrm{in})^{*}(1,242 \mathrm{sf})\right]=3.06$ hours <72 hours, OK
- Pond SIS2: $3,670 \mathrm{cf} /\left[(8.27 \mathrm{in} / \mathrm{hr})^{*}(1 \mathrm{ft} / 12 \mathrm{in})^{*}(1,735 \mathrm{sf})\right]=3.07$ hours <72 hours, OK

10 YEAR DRAWDOWN WITHIN 24 HOURS

- Pond P1: 9,092 cf / [(8.27 in/hr)*($1 \mathrm{ft} / 12 \mathrm{in}) *(8,532 \mathrm{sf})]=1.55$ hours <24 hours, OK
- Pond SIS1: $676 \mathrm{cf} /\left[(8.27 \mathrm{in} / \mathrm{hr})^{*}(1 \mathrm{ft} / 12 \mathrm{in}) *(1,242 \mathrm{sf})\right]=0.79$ hours <24 hours, OK
- Pond SIS2: $1,556 \mathrm{cf} /\left[(8.27 \mathrm{in} / \mathrm{hr})^{*}(1 \mathrm{ft} / 12 \mathrm{in})^{*}(1,735 \mathrm{sf})\right]=1.30$ hours <24 hours, OK Volumes and surface area for ponds acquired from HydroCAD stage storage tables. These tables are attached as an appendix at the end of the HydroCAD analysis.

Standard 4. Stormwater Management System to Remove 80\% of the Average Annual Load of Total Suspended Solids (TSS)

The stormwater management system is designed to remove $>80 \%$ annual total suspended solids (TSS) from the proposed roadway, driveways, and sidewalks.

TSS REMOVAL CALCULATION

TREATMENT TRAIN \#1 - CB TO ISOLATOR ROW TO SUBSURFACE INFILTRATION SYSTEM (R1, R2)
Area of Impervious $=21,788 \mathrm{SF}$

BMP	TSS Removal Rate	Starting TSS Load	Amount Removed	Remaining Load
Deep Sump Hooded Catch Basin	0.25	1.00	0.25	0.75
Isolator Row and Stormtech Chambers	0.80	0.75	0.60	0.15
Total TSS Removal				

TREATMENT TRAIN \#2 - SWALE TO DOWNSTREAM DEFENDER TO INFILTRATION BASIN (S3, S4, S8)
Area of Impervious $=4,791 \mathrm{SF}$

BMP	TSS Removal Rate	Starting TSS Load	Amount Removed	Remaining Load
Downstream Defender	0.50	1.00	0.50	0.50
Infiltration Basin	0.80	0.50	0.40	0.10
Total TSS Removal				

TREATMENT TRAIN \#3 - RGB TO DOWNSTREAM DEFENDER TO INFILTRATION BASIN (R3, R9)

Area of Impervious $=13,690$ SF

BMP	TSS Removal Rate	Starting TSS Load	Amount Removed	Remaining Load
Rain Guardian Bunker	0.91	1.00	0.91	0.09
Downstream Defender	0.50	0.09	0.05	0.04
Infiltration Basin	0.80	0.04	0.03	0.01
Total TSS Removal				

TREATMENT TRAIN \#4 - RGB TO DOWNSTREAM DEFENDER TO INFILTRATION BASIN (R8)
Area of Impervious $=11,017$ SF

BMP	TSS Removal Rate	Starting TSS Load	Amount Removed	Remaining Load
Rain Guardian Bunker	0.75	1.00	0.75	0.25
Downstream Defender	0.50	0.25	0.12	0.13
Infiltration Basin	0.80	0.13	0.10	0.03
Total TSS Removal				

TREATMENT TRAIN \#5 - CB TO DOWNSTREAM DEFENDER TO INFILTRATION BASIN (R4, R6, R7)
Area of Impervious $=34,915$ SF

BMP	TSS Removal Rate	Starting TSS Load	Amount Removed	Remaining Load
Deep Sump Hooded Catch Basin	0.25	1.00	0.25	0.75

Downstream Defender	0.50	0.75	0.37	0.38
Infiltration Basin	0.80	0.38	0.30	0.08
Total TSS Removal				

TREATMENT TRAIN \#6 - RAIN GUARDIAN FOXHOLE TO INFILTRATION BASIN (R5)
Area of Impervious $=17,705$ SF

BMP	TSS Removal Rate	Starting TSS Load	Amount Removed	Remaining Load
Rain Guardian Foxhole	0.79	1.00	0.79	0.21
Infiltration Basin	0.80	0.21	0.16	0.05
Total TSS Removal				

TREATMENT TRAIN \#7 - UNTREATED IMPERVIOUS

Area of Impervious $=476 \mathrm{SF}$

- No Treatment - 0%

WEIGHTED TSS REMOVAL CALCULATION

On-Site Impervious Area - 104,382
(Total analyzed impervious [112,470 SF] - off-site impervious [4,354 SF] - untreated clean roof runoff [3, 734])

- Treatment Train \# 1 - 21,788 SF

Percentage of Site Impervious $=21,788 \mathrm{SF} / 104,382 \mathrm{SF}=20.9 \%$

Weighted TSS Removal $=85 \% \times 20.9 \%=17.8 \%$

- Treatment Train \# 2-4,791 SF

Percentage of Site Impervious $=4,791 \mathrm{SF} / 104,382 \mathrm{SF}=4.6 \%$

Weighted TSS Removal $=90 \% \times 4.6 \%=4.1 \%$

- Treatment Train \# 3-13,690 SF

Percentage of Site Impervious $=13,690 \mathrm{SF} / 104,382 \mathrm{SF}=13.1 \%$

Weighted TSS Removal $=99 \% \times 23.7 \%=23.5 \%$

- Treatment Train \# 4-11,017 SF

Percentage of Site Impervious $=11,017 \mathrm{SF} / 104,382 \mathrm{SF}=10.5 \%$

Weighted TSS Removal $=97 \% \times 23.7 \%=23.5 \%$

- Treatment Train \# 5-34,915 SF

Percentage of Site Impervious $=34,915 \mathrm{SF} / 104,382 \mathrm{SF}=33.4 \%$

Weighted TSS Removal $=92 \% \times 33.4 \%=30.7 \%$

- Treatment Train \# 6-17,705 SF

Percentage of Site Impervious $=17,705 \mathrm{SF} / 104,382 \mathrm{SF}=17.0 \%$

Weighted TSS Removal $=95 \% \times 17.0 \%=16.1 \%$

- Treatment Train \# 7-476 SF

Percentage of Site Impervious $=476 \mathrm{SF} / 104,382 \mathrm{SF}=0.5 \%$

Weighted TSS Removal $=0 \% \times 0.5 \%=0 \%$
Total Sitewide TSS removal $=17.8 \%+4.1 \%+13.1 \%+10.5 \%+30.7 \%+16.1 \%=92.3 \%>80 \%$ OK

WATER QUALITY VOLUME

For new development, stormwater management systems must be designed to remove 80% of the average annual load (post-development conditions) of Total Suspended Solids (TSS). It is presumed that this standard is met when:
a) Suitable nonstructural practices for source control and pollution prevention are implemented.
b) Stormwater management best management practices (BMPs) are sized to capture the prescribed runoff volume; and
c) Stormwater management BMPs are maintained as designed.

In order to achieve the rated TSS Removal Rates, each BMP must be sized adequately. This development proposes to use ACF Rain Guardian Turrets, ACF Rain Guardian Foxholes, as well as
an infiltration basin. The ACF Rain Guardian Turrets and ACF Rain Guardian Foxholes are flow based devices, and the flow calculations can be found below.

Flow rate associated with ACF Rain Guardian Bunker 1:
$\mathrm{Q}=(\mathrm{qu})^{*}(\mathrm{~A})^{*}(\mathrm{WQV})$, where:
$\mathrm{Q}=$ Peak flow rate associated with first 1-inch of runoff
$\mathrm{qu}=$ the unit peak discharge, in csm/in ($774 \mathrm{csm} / \mathrm{in}$ for Tc associated with 6 minutes)
$\mathrm{A}=$ impervious surface drainage area (in square miles)
WQV = water quality volume in watershed inches

ACF Rain Guardian Bunker 1 (RGB1):

ACF Rain Guardian Bunker rated for 75% removal up to 0.50 cfs
ACF Rain Guardian Bunker rated for 91% removal up to 0.25 cfs
$\mathrm{Q}=(774 \mathrm{csm} / \mathrm{in})^{*}(0.000230 \text { square miles })^{*}(1 \mathrm{inch})$
$\mathrm{Q}=0.18 \mathrm{CFS}$

Required Capacity $=0.18$ CFS
ACF Bunker 91% Removal Capacity $=0.25$ CFS (See Appendix C for calculation)
0.25 CFS > 0.18 CFS, OK 91\% Removal

ACF Rain Guardian Bunker 2 (RGB2):

ACF Rain Guardian Bunker rated for 75% removal up to 0.50 cfs
ACF Rain Guardian Bunker rated for 91% removal up to 0.25 cfs
$\mathrm{Q}=(774 \mathrm{csm} / \mathrm{in})^{*}(0.000395 \text { square miles })^{*}(1 \mathrm{inch})$
$\mathrm{Q}=0.31 \mathrm{CFS}$

Required Capacity $=0.31 \mathrm{CFS}$
ACF Bunker 75% Removal Capacity $=0.50$ CFS (See Appendix C for calculation)
0.50 CFS > 0.31 CFS, OK 75\% Removal

ACF Rain Guardian Bunker 3 (RGB3):

ACF Rain Guardian Bunker rated for 75% removal up to 0.50 cfs
ACF Rain Guardian Bunker rated for 91% removal up to 0.25 cfs
$\mathrm{Q}=(774 \mathrm{csm} / \mathrm{in})^{*}(0.000260 \text { square miles })^{*}(1 \mathrm{inch})$
$\mathrm{Q}=0.20 \mathrm{CFS}$

Required Capacity $=0.20$ CFS
ACF Bunker 91\% Removal Capacity $=0.25$ CFS (See Appendix C for calculation)
0.25 CFS >0.20 CFS, OK 91\% Removal

Downstream Defender 8ft dia. (DD-1):
Downstream Defender rated for 50\% removal up to 4.49 cfs
$\mathrm{Q}=(774 \mathrm{csm} / \mathrm{in}) *(0.00159 \text { square miles })^{*}(1$ inch $)$
$\mathrm{Q}=1.23 \mathrm{CFS}$

Required Capacity $=1.23$ CFS
DD 8ft dia 50\% Removal Capacity $=$ 4.49 CFS
4.49 CFS > 1.23 CFS, OK 50\% Removal

Downstream Defender 8ft dia. (DD-2):
Downstream Defender rated for 50\% removal up to 4.49 cfs
$\mathrm{Q}=(774 \mathrm{csm} / \mathrm{in}) *(0.00072$ square miles)*(1 inch)
$\mathrm{Q}=0.56 \mathrm{CFS}$

Required Capacity $=0.56$ CFS
DD 8 ft dia 50% Removal Capacity $=$ 4.49 CFS
4.49 CFS > 0.56 CFS, OK 50\% Removal

ACF Rain Guardian Foxhole (FH):
ACF Rain Guardian Foxhole rated for 79% removal up to 0.50 cfs

```
Q = (774 csm/in)*(0.000635 square miles)*(1 inch)
Q = 0.49 CFS
```

Required Capacity $=0.49$ CFS
ACF Foxhole 79\% Removal Capacity = 0.49 CFS (See Appendix C for calculation)
0.50 CFS ≥ 0.49 CFS, OK 79\% Removal

ADS Stormtech SC-740 Isolator Row:

SIS1

$\mathrm{Q}=(774 \mathrm{csm} / \mathrm{in}) *(0.00028$ square miles $) *(1 \mathrm{inch})$
$\mathrm{Q}=0.22 \mathrm{CFS}$

Required Capacity $=0.22$ CFS
ADS Stormtech SC-740 Isolator Row 80\% Removal Capacity $=0.15$ cfs/chamber x 8 chambers $=1.2 \mathrm{cfs}$

1.20 CFS ≥ 0.22 CFS, OK 80\% Removal

SIS2

$\mathrm{Q}=(774 \mathrm{csm} / \mathrm{in}) *(0.00050$ square miles $) *(1$ inch $)$
$\mathrm{Q}=0.39 \mathrm{CFS}$

Required Capacity $=0.39$ CFS
ADS Stormtech SC-740 Isolator Row 80% Removal Capacity $=0.15$ cfs/chamber x 5 chambers $=0.75 \mathrm{cfs}$
0.75 CFS ≥ 0.39 CFS, OK 80\% Removal

Standard 5. Land Uses with Higher Potential Pollutant Loads

The development is not considered a land use that generally produces higher potential pollutant loads.

Standard 6. Stormwater Discharges to Critical Areas

The proposed stormwater system does not discharge to a critical area.

Standard 7. Redevelopment Projects

The project is not considered a redevelopment project.

Standard 8. Control Construction-related Impacts

The project will install erosion and sediment controls prior to any earthwork activity. Erosion control barriers will be placed down slope from the proposed construction to prevent erosion and sedimentation into the surrounding areas. The barriers will be maintained and inspected periodically during construction; sediment buildup will be removed, and any damaged barrier will be replaced as needed.

Standard 9. Long-Term Operation and Maintenance Plan

See Appendix A for the operation and maintenance requirements of the stormwater management system.

Standard 10. No Illicit Discharges

An illicit discharge compliance statement will be provided by the property owner under separate cover.

Appendix A - Operation and Maintenance Plan

Infiltration Basin

System Owner: Sheldon Meadow, LLC, or future owner.

Estimated Annual Maintenance: \$1,000

(Per DEP Stormwater Structural BMP's Vol 2)
In many cases, a landscaping contractor working elsewhere on the site can complete maintenance tasks. Inspect the basin and outlet structure to ensure no structural damage has occurred and that they are functioning properly and up to design standards.

Inspection and preventive maintenance are required at least twice per year, and after each major storm event. Note how long water remains standing in the basin after a storm. If water remains standing after 48 to 72 hours after a storm, the infiltration basin may be clogged.

At least twice per year, mow the buffer area, side slopes, and basin bottom. Remove grass clippings, accumulated organic matter, trash and debris at this time.

Remove sediment from the basin as necessary when the basin is dry. Use light equipment when removing the top layer, as to not compact the underlying soil. Use deep tilling to break and remove any clogged surfaces and revegetate immediately.

Important items to check during inspections include:

- Signs of differential settlement
- Cracking
- Erosion
- Leakage in the embankments
- Tree growth on the embankments
- Condition of rip rap
- Sediment accumulation
- Health of vegetation, turf
* Paying careful attention to pretreatment, and operation and maintenance can extend the life of the soil media

Date	Inspector	Condition	Maintenance Performed*

*Evidence of maintenance (i.e. receipts) must be provided.

Deep Sump Hooded Catch Basin

System Owner: Sheldon Meadow, LLC, or future owner.

Estimated Annual Maintenance: \$2,000-\$4,000

(Per DEP Stormwater Structural BMP’s Vol 2)

Inspect or clean deep sump basins at least four times per year and at the end of the foliage and snow removal seasons. Sediments must also be removed four times per year or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin. If handling runoff from land uses with higher potential pollutant loads or discharging runoff near or to a critical area, more frequent cleaning may be necessary. Clamshell buckets are typically used to remove sediment in Massachusetts. However, vacuum trucks are preferable because they remove more trapped sediment and supernatant than clamshells. Vacuuming is also a speedier process and is less likely to snap the cast iron hood within the deep sump catch basin.

Date	Inspector	Condition	Maintenance Performed*

ACF Rain Guardian Bunker

System Owner: Sheldon Meadow, LLC, or future owner.
Estimated Annual Maintenance: $\mathbf{\$ 2 5 0 - \$ 5 0 0}$
(Per Manufacturer)
Depending on the characteristics of the contributing watershed and seasonal variation, common maintenance needs include periodic removal of accumulated leaves (and other organic debris) and garbage from the top grate and sediment and fine debris from the concrete dry filter box. Contributing watersheds with high sediment concentrations may require inspections monthly and clean them out at least four times a year. More frequent visits may be needed to satisfy maintenance needs.

If sediment accumulates beyond an acceptable level in the system, it will be necessary to remove. This can be done by manual removal with a shovel or mechanical device. The filter screen can be cleaned manually through brushing or with pressurized water.

Date	Inspector	Condition	Maintenance Performed*

[^0]
ACF Rain Guardian Foxhole

System Owner: Sheldon Meadow, LLC, or future owner.

Estimated Annual Maintenance: \$250-\$500

(Per Manufacturer)
Depending on the characteristics of the contributing watershed and seasonal variation, common maintenance needs include periodic removal of accumulated leaves (and other organic debris) and garbage from the top grate and sediment and fine debris from the concrete dry filter box. Contributing watersheds with high sediment concentrations may require inspections monthly and clean them out at least four times a year. More frequent visits may be needed to satisfy maintenance needs.

If sediment accumulates beyond an acceptable level in the system, it will be necessary to remove. This can be done by manual removal with a shovel or mechanical device. The filter screen can be cleaned manually through brushing or with pressurized water.

Date	Inspector	Condition	Maintenance Performed*

[^1]
Subsurface Infiltration System

System Owner: Sheldon Meadow, LLC, or future owner.

Estimated Annual Maintenance: \$500-\$750

(Per DEP Stormwater Structural BMP's Vol 2)

For the first 3 months after construction, the subsurface infiltration system should be inspected after every storm greater than 1 " for standing water for periods in excess of 72 hours. Therein after, the subsurface infiltration system should be inspected biannually. If standing water is observed for longer than 72 hours, a pump should be placed in the basin and discharged through the outlet pipe. After the system is dewatered, it should be observed by a Professional Engineer. A Professional Engineer should provide an opinion as to why the infiltration system is not draining and provide recommendations to restore infiltration capacity to the system.

Date	Inspector	Condition	Maintenance Performed*

*Evidence of maintenance (i.e. receipts) must be provided.

Stormtech Isolator Row Plus

System Owner: Sheldon Meadow, LLC, or future owner.

Estimated Annual Maintenance: \$250-\$500
(Per StormTech Maintenance Manual)

In the first year of operation, the Isolator Row should be inspected every 6 months for depth of sediment. Therein after, the Isolator Row should be inspected annually. If sediment is present, a stadia rod should be inserted into the inspection port to determine depth of sediment. If/when the depth exceeds 3 inches throughout the length of the Isolator Row, clean out should be performed. Please see the Isolator Row Maintenance Manual for cleanout procedures.

Date	Inspector	Condition	Maintenance Performed*

*Evidence of maintenance (i.e. receipts) must be provided.

Rip Rap and Swale Areas

System Owner: Sheldon Meadow, LLC, or future owner.

Estimated Annual Maintenance: $\mathbf{\$ 2 5 0 - \$ 5 0 0}$

Inspect semi-annually the first year, and at least once a year thereafter. For swales inspect the grass for growth and the side slopes for signs of erosion and formation of rills and gullies. Plant an alternative grass species if the original grass cover is not successfully established. If grass growth is impaired by winter road salt or other deicer use, re-establish the grass in the spring. For rip-rap and swale areas: Trash/Debris Removal: Remove accumulated trash and debris. Sediment removal: Check on a yearly basis and clean as needed. Use hand methods (i.e., a person with a shovel) when cleaning to minimize disturbance to vegetation and or rip rap and underlying soils. Mow on an as-needed basis during the growing season so that the grass height does not exceed 6 inches.

Date	Inspector	Condifion	Maintenance Performed* ${ }^{*}$

*Evidence of maintenance (i.e. receipts) must be provided.

SUPPLEMENTAL DATA REPORT
Sheldon Meadow Development - 20 Hancock Street \& 1139 West Street
April 2022

Downstream Defender

System Owner: Sheldon Meadow, LLC, or future owner.

Estimated Annual Maintenance: \$500-\$750

See manufacturer specific maintenance information below.

Appendix B - Erosion and Sediment Control Notes and General Construction Sequence

Erosion and Sediment Control Notes

1) Erosion and sediment control measures must be installed prior to the start of construction and maintained and upgraded as necessary during construction by the contractor. It is the contractor's responsibility to inspect and install additional control measures as needed during construction.
2) All catch basins receiving drainage from the project site must be provided with a catch basin filter.
3) Stabilization of all re-graded and soil stockpile areas must be maintained during all phases of construction.
4) Sediment removed from erosion and sediment control devices must be properly removed and disposed. All damaged controls must be removed and replaced.
5) The contractor is responsible for implementing the erosion and sediment control plan. This includes the installation and maintenance of control measures, informing all parties engaged on the construction site of the requirements and objectives of the plan, and notifying the proper city agency of any transfer of this responsibility.
6) The contractor shall be responsible for controlling wind erosion and dust throughout the life of his contract. Dust control may include, but is not limited to, sprinkling of water on exposed soils and street sweeping adjacent roadways.
7) If final grading is to be delayed for more than 21 days after land disturbance activities cease, temporary vegetation or mulch shall be used to stabilize soils within 14 days of the last disturbance.
8) If a disturbed area will be exposed for greater than one year, permanent grasses or other approved cover must be installed.
9) The contractor must keep on-site at all times additional silt fence and hay bales for the installation at the direction of the engineer or the city to mitigate any emergency condition.
10) The construction fencing and erosion and sediment controls as shown may not be practical during all stages of construction. Earthwork activity on-site must be done in a manner such that runoff is directed to a sediment control device or infiltrated to the ground.
11) Demolition and construction debris must be properly contained and disposed of.
12) Disposal of all demolished materials is the responsibility of the contractor and must be hauled off-site in accordance with all federal, state, and local requirements.

General Construction Sequence

1) Install erosion and sediment controls prior to starting any earthworks activity.
2) Begin clearing, grubbing and demolition.
3) Begin utility installations.
4) Construct building foundation.
5) Install site furnishings.
6) Install landscaping.
7) Erosion and sediment controls shall be maintained until permanent cover is established.

Appendix C - ACF Rain Guardian Supplemental Information

RAIN GUARDIAN TURRET AND FOXHOLE ENGINEERING PROPERTIES

RAIN GUARDIAN TURRET:

Turret Flow Rate Capacity:

Outflow is possible through three locations. Please note the vertical filter within the chamber was assumed to be 100% clogged because its primary function is to allow the chamber to dry out between rain events.

1) Filter overflow - water can pass between the top of the filter and the bottom of the metal grate; calculated using the continuity equation (i.e. $\mathrm{Q}=\mathrm{V}^{*} \mathrm{~A}$)
2) Grate overflow - water can pass through the top metal grate beyond the vertical filter wall; calculated using an orifice equation (i.e. $\mathrm{Q}=0.0108^{*} \mathrm{~A}^{*} \sqrt{\mathrm{~d}}$)
3) High volume overflow - water can overtop the front debris wall onto the splash pad; calculated using a standard broad crested weir equation (i.e. $\mathrm{Q}=\mathrm{C}^{*} \mathrm{~L}^{*} \mathrm{H}^{\wedge}(3 / 2)$)

Filter overflow - 0.45 CFS
Grate overflow - 2.59 CFS
Emergency overflow - 0.41 CFS
TOTAL: 3.45 CFS

Turret Internal Storage Vol: (i.e. storage capacity below the top of the filter wall): $\mathbf{4 . 0 2} \mathbf{f t}^{3}$

RAIN GUARDIAN FOXHOLE:

Below are the flow and storage data for the Rain Guardian Foxhole with an inlet, middle, and outlet (i.e. 6' top lid). (the addition of mid section (for longer units) would improve the sediment storage capacity).

Foxhole Flow Rate Capacity:

Outflow is possible through three locations. Please note the vertical filter within the chamber was assumed to be 100% clogged because its primary function is to allow the chamber to dry out between rain events.

1) Filter overflow - water can pass between the top of the filter and the bottom of the metal grate; calculated using the continuity equation (i.e. $Q=V^{*} A$)
2) Grate overflow - water can pass through the top metal grate beyond the vertical filter wall; calculated using an orifice equation (i.e. $\mathrm{Q}=0.0108 * \mathrm{~A} * \sqrt{\mathrm{~d}}$)
3) High volume overflow - water can overtop the front debris wall onto the splash pad; calculated using a standard broad crested weir equation (i.e. $\mathrm{Q}=\mathrm{C}^{*} \mathrm{~L}^{*} \mathrm{H}^{\wedge}(3 / 2)$)

Filter overflow - 0.30 CFS
Grate overflow - 2.69 CFS
Emergency overflow - 0.52 CFS
TOTAL: 3.51 CFS

Foxhole Internal Storage Volume (i.e. storage capacity below the top of the filter wall):
Inlet + Outlet: $2.0 \mathrm{ft}^{3}$
Middle: $2.65 \mathrm{ft}^{3}$
TOTAL: $4.65 \mathbf{f t}^{\mathbf{3}}$

From:	Lee Jones
To:	$\underline{\text { Patrick Bogle }}$
Subject:	FW: ACF Environmental - Rain Guardians
Date:	Friday, December 4, 2020 9:30:52 AM
Attachments:	2017.11.21 Flow Data.pdf

Patrick,
Good morning
Great talking with you yesterday.
Per our discussion, I have reviewed the study.
The study was performed by flow rates which are shown and not by storm events.
I am also attaching the Flow Data pdf.

- Rain Guardian Gross Solids and Sediment Removal Report
- Bunker sediment capture - 75.6\% at 0.5 CFS and 91.7% at 0.25 CFS
- Bunker gross solids capture - 61.4\% at 0.5 CFS and 78.8\% at 0.25 CFS
- Turret sediment capture - 79.1\% at 0.5 CFS and 88.4\% at 0.25 CFS
- Turret gross solids capture - 72.4\% at 0.5 CFS and 86.7\% at 0.25 CFS
- NOTE: Grass and rock lined inlets were also tested and achieved similar removal efficiencies. While the grass lined inlet and rock lined inlets removed similar amounts of sediment under the flow rates tested, the ease of maintenance, longterm effectiveness, storage capacity, and stability of the Rain Guardians set them apart from the grass and rock. The 'Maintenance Considerations' section (5.4) on pages $65-68$ of the report highlights some advantages of the Rain Guardian products.
Please let me know if I can be of help Best regards,
Lee

Leland (Lee) Jones, QSM
BMP Specialist - New England
ACF Environmental
508-745-7052 cell
ljones@acfenv.com
www.acfenvironmental.com
"Start each day with a positive thought and a grateful heart" Roy T. Bennett

Appendix D - ADS Stormtech Isolator Row TSS Removal Rates

4. Technology

Specific size/capacity of MTD assessed (include units):
The StormTech Isolator row can be sized to meet the needs of the project. Sizing can be either volume based for sites with good infiltrative soils, or the more commonly used practice of rate based sizing using a maximum water quality flow of less than $2.5 \mathrm{gpm} / \mathrm{sqft}$ of bottom area using two layers of woven geotextile (315W by ADS).

Range of drainage areas served by MTD (acres):
Site configuration is the only limiting factor as to the drainage area that can be served. In general, StormTech recommends the length of the Isolator Row be limited to less than 175 feet for cleaning/maintenance purposes. Multiple Isolator Rows can be placed side by side to increase the size of the area served.

Include sizing chart or describe sizing criteria:
Volume Based - For sites with good infiltration rates, a volume based approach can be used with a corresponding stage storage curves based on the number of StormTech Isolator Chambers provided. Bare chamber storage volumes listed in table are in cubic feet per chamber:

SC-310	14.7	$\mathrm{cf} /$ chamber
SC-740	45.9	$\mathrm{cf} /$ chamber
DC-780	$46.2 \mathrm{cf} /$ chamber	
MC3500	$113.0 \mathrm{cf} /$ chamber	
MC4500	$106.5 \mathrm{cf} /$ chamber	

Rate Based - For sites with where a combination of infiltration and detention/retention is used, at rate based approach is typically used. The treatments rates are based on available surface treatment area and factors of safety that were developed from extensive testing. 80% TSS removal and 40% TP removal can be achieved by sizing the Isolator Rows base on these maximum flows per chamber:

Chamber	Specific Flow Rate	Bottom Area	Flow Per Chamber
SC-310	$2.5 \mathrm{gpm} / \mathrm{sf}$	17.7 sf	0.10 cfs
RC-310	$2.5 \mathrm{gpm} / \mathrm{sf}$	17.7 sf	0.10 cfs
SC-740	$2.5 \mathrm{gpm} / \mathrm{sf}$	27.8 sf	0.15 cfs
RC-750	$2.5 \mathrm{gpm} / \mathrm{sf}$	27.8 sf	0.15 cfs
DC-780	$2.5 \mathrm{gpm} / \mathrm{sf}$	27.8 sf	0.15 cfs
MC-3500	$2.5 \mathrm{gpm} / \mathrm{sf}$	43.2 sf	0.24 cfs
MC-4500	$2.5 \mathrm{gpm} / \mathrm{sf}$	30.1 sf	0.17 cfs

Table 2 - Treatment Rate per Chamber

Appendix E - Downstream Defender Supplemental Information

Operation and Maintenance Manual

Downstream Defender ${ }^{\circledR}$

Table of Contents

3 Downstream Defender ${ }^{\ominus}$ by Hydro International

- Benefits of the Downstream Defender ${ }^{\circledR}$
- Applications
- Downstream Defender ${ }^{\circledR}$ Components

4 Operation

- Introduction
- Pollutant Capture and Retention
- Wet Sump
- Blockage Protection

4 Maintenance

- Overview
- Determining You Maintenance Schedule

5 Maintenance Procedures

- Inspection
- Floatables and Sediment Cleanout

8 Downstream Defender ${ }^{\circledR}$ Installation Log

9 Downstream Defender ${ }^{\circledR}$ Inspection and Maintenance Log

COPYRIGHT STATEMENT: The contents of this manual, including the drawings and specifications contained herein or annexed hereto, are intended for the use of the recipient to whom the document and all associated information are directed. Hydro International plc owns the copyright of this document (including any drawings or graphics), which is supplied in confidence. It must not be used for any purpose other than that for which it is supplied and must not be reproduced, in whole or in part stored in a retrieval system or transmitted in any form or by any means without prior permission in writing from Hydro International plc. Downstream Defender ${ }^{\circledR}$ is a trademarked hydrodynamic vortex separation device of Hydro International plc. A patent covering the Downstream Defender ${ }^{\circledR}$ has been granted.

DISCLAIMER: Information and data contained in this manual is exclusively for the purpose of assisting in the operation and maintenance of Hydro International plc's Downstream Defender ${ }^{\circledR}$. No warranty is given nor can liability be accepted for use of this information for any other purpose. Hydro International plc have a policy of continuous product development and reserve the right to amend specifications without notice.

Downstream Defender ${ }^{\circledR}$ by Hydro International

The Downstream Defender ${ }^{\circledR}$ is an advanced Hydrodynamic Vortex Separator designed to provide high removal efficiencies of settleable solids and their associated pollutants, oil, and floatables over a wide range of flow rates.

The Downstream Defender ${ }^{\circledR}$ has unique, flow-modifying internal components developed from extensive full-scale testing, CFD modeling and over thirty years of hydrodynamic separation experience in wastewater, combined sewer and stormwater applications. These internal components distinguish the Downstream Defender ${ }^{\circledR}$ from simple swirl-type devices and conventional oil/grit separators by minimizing turbulence and headlosses, enhancing separation, and preventing washout of previously stored pollutants.

The high removal efficiencies and inherent low headlosses of the Downstream Defender ${ }^{\circledR}$ allow for a small footprint making it a compact and economical solution for the treatment of non-point source pollution.

Benefits of the Downstream Defender ${ }^{\circledR}$

- Removes sediment, floatables, oil and grease
- No pollutant washouts
- Small footprint
- No loss of treatment capacity between clean-outs
- Low headloss
- Efficient over a wide ranges of flows
- Easy to install
- Low maintenance

Applications

- New developments and retrofits
- Utility yards
- Streets and roadways
- Parking lots
- Pre-treatment for filters, infiltration and storage
- Industrial and commercial facilities
- Wetlands protection

Downstream Defender ${ }^{\circledR}$ Components

1. Central Access Port
2. Floatables Access Port (6-ft., 8-ft. and $10-\mathrm{ft}$. models only)
3. Dip Plate
4. Tangential Inlet
5. Center Shaft
6. Center Cone
7. Benching Skirt
8. Floatables Lid
9. Outlet Pipe
10. Floatables Storage
11. Isolated Sediment Storage Zone

Operation

Introduction

The Downstream Defender ${ }^{\circledR}$ operates on simple fluid hydraulics. It is self-activating, has no moving parts, no external power requirement and is fabricated with durable non-corrosive components. No manual procedures are required to operate the unit and maintenance is limited to monitoring accumulations of stored pollutants and periodic clean-outs. The Downstream Defender ${ }^{\circledR}$ has been designed to allow for easy and safe access for inspection/monitoring and clean-out procedures. Entry into the unit or removal of the internal components is not necessary for maintenance, thus safety concerns related to confined-spaceentry are avoided.

Pollutant Capture and Retention

The internal components of the Downstream Defender ${ }^{\circledR}$ have been designed to protect the oil, floatables and sediment storage volumes so that separator performance is not reduced as pollutants accumulate between clean-outs. Additionally, the Downstream Defender ${ }^{\circledR}$ is designed and installed into the storm drain system so that the vessel remains wet between storm events. Oil and floatables are stored on the water surface in the outer annulus separate from the sediment storage volume in the sump of the unit providing the option for separate oil disposal, and accessories such as adsorbant pads. Since the oil/floatables and sediment storage volumes are isolated from the active separation region, the potential for re-suspension and washout of stored pollutants between clean-outs is minimized.

Wet Sump

The sump of the Downstream Defender ${ }^{\circledR}$ retains a standing water level between storm events. The water in the sump prevents stored sediment from solidifying in the base of the unit. The cleanout procedure becomes more difficult and labor intensive if the system allows fine sediment to dry-out and consolidate. Dried sediment must be manually removed by maintenance crews. This is a labor intensive operation in a hazardous environment.

Blockage Protection

The Downstream Defender ${ }^{\circledR}$ has large clear openings and no internal restrictions or weirs, minimizing the risk of blockage and hydraulic losses. In addition to increasing the system headloss, orifices and internal weirs can increase the risk of blockage within the unit.

Maintenance

Overview

The Downstream Defender ${ }^{\circledR}$ protects the environment by removing a wide range of pollutants from stormwater runoff. Periodic removal of these captured pollutants is essential to the continuous, long-term functioning of the Downstream Defender ${ }^{\circledR}$. The Downstream Defender ${ }^{\circledR}$ will capture and retain sediment and oil until the sediment and oil storage volumes are full to capacity. When sediment and oil storage capacities are reached, the Downstream Defender ${ }^{\circledR}$ will no longer be able to store removed sediment and oil. Maximum pollutant storage capacities are provided in Table 1.

Fig. 1 Pollutant storage volumes of the Downswtream Defender.

The Downstream Defender ${ }^{\circledR}$ allows for easy and safe inspection, monitoring and clean-out procedures. A commercially or municipally owned sump-vac is used to remove captured sediment and floatables. Access ports are located in the top of the manhole. On the 6-ft, 8 -ft and 10-ft units, the floatables access port is above the outlet pipe between the concrete manhole wall and the dip plate. The sediment removal access ports for all Downstream Defender ${ }^{\circledR}$ models are located directly over the hollow center shaft.

Maintenance events may include Inspection, Oil \& Floatables Removal, and Sediment Removal. Maintenance events do not require entry into the Downstream Defender ${ }^{\circledR}$, nor do they require the internal components of the Downstream Defender ${ }^{\circledR}$ to be removed. In the case of inspection and floatables removal, a vactor truck is not required. However, a vactor truck is required if the maintenance event is to include oil removal and/or sediment removal.

Determining Your Maintenance Schedule

The frequency of cleanout is determined in the field after installation. During the first year of operation, the unit should be inspected every six months to determine the rate of sediment and floatables accumulation. A simple probe such as a Sludge Judge ${ }^{\circledR}$ can be used to determine the level of accumulated solids stored in the sump. This information can be recorded in the maintenance \log (see page 9) to establish a routine maintenance schedule.

The vactor procedure, including both sediment and oil/flotables removal, for a 6-ft Downstream Defender ${ }^{\otimes}$ typically takes less than 30 minutes and removes a combined water/oil volume of about 500 gallons.

Inspection Procedures

Inspection is a simple process that does not involve entry into the Downstream Defender ${ }^{\circledR}$. Maintenance crews should be familiar with the Downstream Defender ${ }^{\circledR}$ and its components prior to inspection.

Scheduling

- It is important to inspect your Downstream Defender ${ }^{\circledR}$ every six months during the first year of operation to determine your site-specific rate of pollutant accumulation
- Typically, inspection may be conducted during any season of the year
- Sediment removal is not required unless sediment depths exceed 75% of maximum clean-out depths stated in Table 1

Recommended Equipment

- Safety Equipment and Personal Protective Equipment (traffic cones, work gloves, etc.)
- Crow bar or other tool to remove grate or lid
- Pole with skimmer or net
- Sediment probe (such as a Sludge Judge ${ }^{\circledR}$)
- Trash bag for removed floatables
- Downstream Defender ${ }^{\circledR}$ Maintenance Log

Table 1. Downstream Defender ${ }^{\circledR}$ Pollutant Storage Capacities and Max. Cleanout Depths.

| Unit Diameter | Total Oil Storage | Oil Clean-out Depth | Total Sediment
 Storage | Sediment
 Clean-out Depth | Max. Liquid Volume
 Removed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (feet) | (gallons) | (inches) | (gallons) | (inches) | (gallons) |

NOTES

1. Refer to Dowmstream Defender ${ }^{\circledR}$ Clean-out Detail (Fig. 1) for measurement of depths.
2. Oil accumulation is typically less than sediment, however, removal of oil and sediment during the same service is recommended.
3. Remove floatables first, then remove sediment storage volume.
4. Sediment removal is not required unless sediment depths exceed 75% of maximum clean-out depths stated in Table 1.

Fig. 4

Fig. 5

Fig. 6

Inspection Procedures

1. Set up any necessary safety equipment around the access port or grate of the Downstream Defender ${ }^{\circledR}$ as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
2. Remove the lids to the manhole (Fig. 4). NOTE: The 4-ft Downstream Defender ${ }^{\circledR}$ will only have one lid.
3. Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities. See Fig. 7 and 8 for typical inspection views.
4. Without entering the vessel, use the pole with the skimmer net to remove floatables and loose debris from the outer annulus of the chamber.
5. Using a sediment probe such as a Sludge Judge ${ }^{\circledR}$, measure the depth of sediment that has collected in the sump of the vessel (Fig.5).
6. On the Maintenance Log (see page 9), record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components or blockages.

Fig. 7 View over center shaft into sediment storage zone.
7. Securely replace the grate or lid.
8. Take down safety equipment.
9. Notify Hydro International of any irregularities noted during inspection.

Floatables and Sediment Cleanout

Floatables cleanout is typically done in conjunction with sediment removal. A commercially or municipally owned sump-vac is used to remove captured sediment and floatables (Fig.6).

Floatables and loose debris can also be netted with a skimmer and pole. The access port located at the top of the manhole provides unobstructed access for a vactor hose and skimmer pole to be lowered to the base of the sump.

Scheduling

- Floatables and sump cleanout are typically conducted once a year during any season.
- If sediment depths are greater than 75% of maximum cleanout depths stated in Table 1, sediment removal is required.
- Floatables and sump cleanout should occur as soon as possible following a spill in the contributing drainage area.

Fig. 8 View of outer annulus of floatables and oil collection zone.

Recommended Equipment

- Safety Equipment (traffic cones, etc)
- Crow bar or other tool to remove grate or lid
- Pole with skimmer or net (if only floatables are being removed)
- Sediment probe (such as a Sludge Judge ${ }^{\circledR}$)
- Vactor truck (6-inch flexible hose recommended)
- Downstream Defender® ${ }^{\circledR}$ Maintenance Log

1. Set up any necessary safety equipment around the access port or grate of the Downstream Defender ${ }^{\circledR}$ as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
2. Remove the lids to the manhole (NOTE: The 4-ft Downstream Defender ${ }^{\circledR}$ will only have one lid).
3. Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities.
4. Using the Floatables Port for access, remove oil and floatables stored on the surface of the water with the vactor hose or the skimmer net (Fig.9).
5. Using a sediment probe such as a Sludge Judge ${ }^{\circledR}$, measure the depth of sediment that has collected in the sump of the vessel and record it in the Maintenance Log (Pg.9).
6. Once all floatables have been removed, drop the vactor hose to the base of the sump via the Central Access Port. Vactor out the sediment and gross debris off the sump floor (Fig.6).
7. Retract the vactor hose from the vessel.
8. On the Maintenance Log provided by Hydro International, record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components or blockages.
9. Securely replace the grate or lid.

Fig. 9 Floatables and sediment are removed with a vactor hose

Maintenance at a Glance

Activity	Frequency
Inspection	- Regularly during first year of installation - Every 6 months after the first year of installation
Oil and Floatables Removal	- Once per year, with sediment removal - Following a spill in the drainage area
Sediment Removal	- Once per year or as needed - Following a spill in the drainage area

NOTE: For most cleanouts it is not necessary to remove the entire volume of liquid in the vessel. Only removing the first few inches of oils/floatables and the sediment storage volume is required.

Hydro Maintenance Services

Hydro International has been engineering stormwater treatment systems for over 30 years. We understand the mechanics of removing pollutants from stormwater and how to keep systems running at an optimal level.

Nobody Knows our Systems Better than we do

Avoid Service Negligence

Sanitation services providers not intimately familiar with stormwater treatment systems are at risk of the following:

- Inadvertently breaking parts or failing to clean/replace system components appropriately.
- Charging you for more frequent maintenance because they lacked the tools to service your system properly in the first place.
- Billing you for replacement parts that might have been covered under your Hydro warranty plan
- Charging for maintenance that may not yet have been required.

Leave the Dirty Work to us

Trash, sediment and polluted water is stored inside treatment systems until they are removed by our team with a vactor truck. Sometimes teams must physically enter the system chambers in order to prepare the system for maintenance and install any replacement parts. Services include but are not limited to:

- Solids removal
- Removal of liquid pollutants
- Replacement media installation (when applicable)

Better Tools, Better Results

Not all vactor trucks are created equal. Appropriate tools and suction power are needed to service stormwater systems appropriately. Companies who don't specialize in stormwater treatment won't have the tools to properly clean systems or install new parts.

Service Warranty

Make sure you're not paying for service that is covered under your warranty plan. Only Hydro International's service teams can identify tune-ups that should be on us, not you.

Treatment Systems Serviced by Hydro:

- Stormwwater filters
- Stormwater separators
- Baffle boxes
- Biofilters/biorention systems
- Storage structures
- Catch basins
- Stormwater ponds
- Permeable pavement

Downstream Defender ${ }^{\circledR}$ Installation Log

HYDRO INTERNATIONAL REFERENCE NUMBER:	
SITE NAME:	
SITE LOCATION:	CONTRACTOR:
OWNER:	
CONTACT NAME:	CONTACT NAME:
COMPANY NAME:	COMPANY NAME:
ADDRESS:	ADDRESS:
TELEPHONE:	TELEPHONE:

INSTALLATION DATE: | |
MODEL (CIRCLE ONE):
4-FT
6-FT
8-FT
10-FT
CUSTOM

Downstream Defender ${ }^{\circledR}$ Inspection and Maintenance Log

Date	Initials	Depth of Floatables and Oils	Sediment * Depth Measured	Volume of Sediment Removed	Site Activity and Comments

*Note: Sediment removal is not required unless sediment depths exceed 75% of maximum clean-out depths stated in Table 1.

Hydro
 International

Do it Right the First Time

LEARN MORE AT HYDRO-INT.COM/SERVICE

CALL 1 (888) 382-7808 TO SCHEDULE AN INSPECTION

Stormwater Solutions

94 Hutchins Drive
Portland, ME 04102

Tel: (207) 756-6200
Fax: (207) 756-6212
stormwaterinquiry@hydro-int.com
www.hydro-int.com

Appendix F - Locus Map

Appendix G - Pre and Post Drainage Maps

Appendix H - HydroCAD, Stage Storage and Hydrographs

19227-PreDevelopment

Prepared by Howard Stein Hudson
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)
1	2-Inch	Type III 24-hr	Default	24.00	1	2.00	2
2	$2-y r$	Type III 24-hr	Default	24.00	1	3.27	2
3	10-yr	Type III 24-hr	Default	24.00	1	4.92	2
4	$50-\mathrm{yr}$	Type III 24-hr	Default	24.00	1	7.42	2
5	100-yr	Type III 24-hr	Default	24.00	1	8.86	2

19227-PreDevelopment

Prepared by Howard Stein Hudson
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq-ft})$	CN	Description (subcatchment-numbers)
205,109	61	$>75 \%$ Grass cover, Good, HSG B (101S, 102S, 103S)
3,780	98	Paved parking, HSG B (101S, 102S, 103S)
5,006	98	Roofs, HSG B (101S, 102S, 103S)
99,520	55	Woods, Good, HSG B (101S, 102S)
$\mathbf{3 1 3 , 4 1 5}$	$\mathbf{6 0}$	TOTAL AREA

19227-PreDevelopment

Prepared by Howard Stein Hudson
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
313,415	HSG B	101S, 102S, 103S
0	HSG C	
0	HSG D	
0	Other	
313,415		TOTAL AREA

19227-PreDevelopment

Prepared by Howard Stein Hudson
Printed 4/11/2022
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Ground Covers (all nodes)						
HSG-A (sq-ft)	HSG-B (sq-ft)	$\begin{array}{r} \text { HSG-C } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	HSG-D (sq-ft)	Other (sq-ft)	$\begin{array}{r} \text { Total } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Ground Cover
0	205,109	0	0	0	205,109	>75\% Grass
						cover, Good
0	3,780	0	0	0	3,780	Paved parking
0	5,006	0	0	0	5,006	Roofs
0	99,520	0	0	0	99,520	Woods, Good
0	313,415	0	0	0	313,415	TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 101S: Center Wetlands	Runoff Area $=182,426$ sf 0.74% Impervious Runoff Depth >0.05 "
	Flow Length=789' Tc=24.4 min CN=59 Runoff=0.03 cfs 734 cf
Subcatchment 102S: To Abutter	Runoff Area $=107,837$ sf 3.38% Impervious Runoff Depth >0.07 " Flow Length=530' Tc=20.7 min CN=61 Runoff=0.03 cfs 648 cf
Subcatchment 103S: To Depression	Runoff Area $=23,152$ sf 16.37% Impervious Runoff Depth >0.17 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=67$ Runoff=$=0.04 \mathrm{cfs} 334 \mathrm{cf}$
Pond EX: Existing Abutter Depression Discar	Peak Elev=249.91' Storage=30 cf Inflow=0.04 cfs 334 cf $=0.02$ cfs 333 cf Primary $=0.00$ cfs 0 cf Outflow=0.02 cfs 333 cf
Link AP1: To Wetlands	$\begin{aligned} & \text { Inflow }=0.03 \text { cfs } 734 \mathrm{cf} \\ & \text { Primary }=0.03 \mathrm{cfs} 734 \mathrm{cf} \end{aligned}$
Link AP2: To Abutter	$\begin{aligned} & \text { Inflow=}=0.03 \mathrm{cfs} 648 \mathrm{cf} \\ & \text { Primary }=0.03 \mathrm{cfs} 648 \mathrm{cf} \end{aligned}$
Link AP3: Abutter Depression	$\begin{aligned} & \text { Inflow }=0.00 \mathrm{cfs} \\ & \text { Primary } 00.00 \mathrm{cf} \\ & \text { cfs } \end{aligned} 0 \mathrm{cf}, ~ \$$

Total Runoff Area $=313,415$ sf Runoff Volume $=1,716$ cf Average Runoff Depth $=0.07$ " $\mathbf{9 7 . 2 0 \%}$ Pervious $=304,629$ sf $\quad \mathbf{2 . 8 0 \%}$ Impervious $=8,786$ sf

Summary for Subcatchment 101S: Center Wetlands

Runoff $=\quad 0.03$ cfs @ 14.99 hrs, Volume= 734 cf, Depth> $0.05{ }^{\prime \prime}$
Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Inch Rainfall=2.00"

Summary for Subcatchment 102S: To Abutter

Runoff $=\quad 0.03$ cfs @ 13.81 hrs, Volume= 648 cf , Depth> 0.07"
Routed to Link AP2 : To Abutter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description		
	1,237				
	83,409		Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	20,785	55	Woods, Good, HSG B		
	2,406	98 R	Roofs, HSG B		
	107,837		Weighted Average 96.62\% Pervious Area 3.38\% Impervious Area		
	104,194				
	3,643				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.3	50	0.0100	0.11		Sheet Flow, Grass: Short n=0.150 P2=3.27"
12.7	446	0.0070	0.59		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.7	34	0.0300	0.87		Shallow Concentrated Flow,
20.7	530	Total			Woodland Kv= 5.0 fps

Summary for Subcatchment 103S: To Depression

Runoff $=0.04$ cfs @ 12.31 hrs, Volume= 334 cf, Depth> 0.17"

Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description		
	1,600	98 P			
	19,361	61 >	Paved parking, HSG B >75\% Grass cover, Good, HSG B Roofs, HSG B		
	2,191	98 R			
	23,152	67 V	Weighted Average		
	19,361		83.63\% Pervious Area		
	3,791		16.37\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	23,152 sf,	16.37\% Impervious,	Inflow Depth > 0.17" for 2-Inch event
Inflow	0.04 cfs @	12.31 hrs, Volume=	334 cf
Outflow	0.02 cfs @	12.59 hrs , Volume=	333 cf , Atten= 46\%, Lag= 16.8 min
Discarded =	0.02 cfs @	12.59 hrs , Volume=	333 cf
Primary	0.00 cfs @	0.00 hrs , Volume=	0 cf
Routed to	AP3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev=249.91' @ 12.59 hrs Surf.Area= 385 sf Storage= 30 cf

Plug-Flow detention time $=9.4$ min calculated for 333 cf (100% of inflow)
Center-of-Mass det. time $=8.6$ min (955.4-946.8)

Discarded OutFlow Max=0.02 cfs @ 12.59 hrs HW=249.91' (Free Discharge)
—1=Exfiltration (Controls 0.02 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=249.80' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link AP1: To Wetlands

Inflow Area $=$	$182,426 \mathrm{sf}$,	0.74% Impervious,	Inflow Depth $>00.05 "$	for 2 -Inch event
Inflow	$=$	$0.03 \mathrm{cfs} @$	14.99 hrs , Volume $=$	734 cf
Primary	$=$	$0.03 \mathrm{cfs} @$	14.99 hrs , Volume $=$	734 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP2: To Abutter

Inflow Area $=$	$107,837 \mathrm{sf}$,	3.38% Impervious,	Inflow Depth $>0.07 "$	for 2 -Inch event
Inflow	$=$	$0.03 \mathrm{cfs} @$	13.81 hrs , Volume $=$	648 cf
Primary	$=$	$0.03 \mathrm{cfs} @ 13.81 \mathrm{hrs}$, Volume $=$	648 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP3: Abutter Depression

Inflow Area $=$	$23,152 \mathrm{sf}, 16.37 \%$ Impervious,	Inflow Depth $=0.00 "$	for 2 -Inch event
Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume $=$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 101S: Center Wetlands	Runoff Area $=182,426$ sf 0.74% Impervious Runoff Depth >0.40 "
	Flow Length=789' Tc=24.4 min CN=59 Runoff=0.76 cfs $6,028 \mathrm{cf}$
Subcatchment 102S: To Abutter	Runoff Area=107,837 sf 3.38% Impervious Runoff Depth>0.47"
	Flow Length=530' Tc=20.7 min CN=61 Runoff=0.62 cfs 4,218 cf
Subcatchment 103S: To Depression	Runoff Area=23,152 sf 16.37% Impervious Runoff Depth >0.72 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=67$ Runoff= $0.38 \mathrm{cfs} 1,395 \mathrm{cf}$
Pond EX: Existing Abutter Depression Discarded=	Peak Elev=250.26' Storage=337 cf Inflow=0.38 cfs 1,395 cf .09 cfs 1,366 cf Primary $=0.05$ cfs 28 cf Outflow=0.14 cfs 1,394 cf
Link AP1: To Wetlands	$\begin{aligned} & \text { Inflow }=0.76 \mathrm{cfs} \quad 6,028 \mathrm{cf} \\ & \text { Primary }=0.76 \mathrm{cfs} 6,028 \mathrm{cf} \end{aligned}$
Link AP2: To Abutter	$\begin{aligned} & \text { Inflow=0.62 cfs } 4,218 \mathrm{cf} \\ & \text { Primary }=0.62 \mathrm{cfs} 4,218 \mathrm{cf} \end{aligned}$
Link AP3: Abutter Depression	$\begin{aligned} & \text { Inflow }=0.05 \text { cfs } 28 \mathrm{cf} \\ & \text { Primary }=0.05 \text { cfs } 28 \text { cf } \end{aligned}$

Total Runoff Area $=313,415$ sf Runoff Volume $=11,642$ cf Average Runoff Depth $=0.45$ "
$\mathbf{9 7 . 2 0 \%}$ Pervious $=304,629$ sf 2.80% Impervious $=8,786$ sf

Summary for Subcatchment 101S: Center Wetlands

Runoff $=\quad 0.76$ cfs @ 12.51 hrs, Volume $=\quad 6,028 \mathrm{cf}$, Depth> $0.40^{\prime \prime}$
Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Paved parking, HSG B		
	943	98			
	102,339		Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	78,735	$\begin{array}{ll} 61 & > \\ 55 & \mathrm{~V} \end{array}$	Woods, Good, HSG B		
	409		Roofs, HSG B		
	182,426	59	Weighted Average 99.26\% Pervious Area 0.74\% Impervious Area		
	181,074				
	1,352				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
4.7	50	0.0300	0.18		Sheet Flow, Grass: Short n=0.150 P2=3.27"
12.5	524	0.0100	0.70		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
7.2	215	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
24.4	789	Total			

Summary for Subcatchment 102S: To Abutter

Runoff $=\quad 0.62$ cfs @ 12.41 hrs, Volume= $4,218 \mathrm{cf}$, Depth> $0.47{ }^{\prime \prime}$
Routed to Link AP2 : To Abutter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-yr Rainfall=3.27"

Area (sf)		CN D	Description		
1,237		98	Paved parking, HSG B >75\% Grass cover, Good, HSG B Woods, Good, HSG B Roofs, HSG B		
83,409		61			
20,785		55			
2,406		98			
107,837 104,194 3,643		61	Weighted Average 96.62\% Pervious Area 3.38\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.3	50	0.0100	0.11		Sheet Flow,
					Grass: Short n=0.150 P2=3.27"
12.7	446	0.0070	0.59		Shallow Concentrated Flow,
					Short Grass Pasture Kv=7.0 fps
0.7	34	0.0300	0.87		Shallow Concentrated Flow,
20.7	530	Total			Woodland Kv= 5.0 fps

Summary for Subcatchment 103S: To Depression

Runoff $=0.38$ cfs @ 12.11 hrs, Volume= $1,395 \mathrm{cf}$, Depth> 0.72"

Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description Paved parking, HSG B		
	1,600	98 P			
	19,361	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	2,191	98 R			
	23,152	67 W	Weighted Average		
	19,361		83.63\% Pervious Area		
	3,791		16.37\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	23,152 sf	pervious	Inflow Depth > 0.72" for 2-yr event
Inflow	0.38 cfs @	12.11 hrs , Volume=	1,395 cf
Outflow	0.14 cfs @	12.49 hrs , Volume=	1,394 cf, Atten= 63\%, Lag= 22.7 min
Discarded	0.09 cfs @	12.49 hrs , Volume=	1,366 cf
Primary	0.05 cfs @	12.49 hrs , Volume=	28 cf

Routed to Link AP3 : Abutter Depression
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev=250.26' @ 12.49 hrs Surf.Area= 1,523 sf Storage= 337 cf

Plug-Flow detention time $=39.4 \mathrm{~min}$ calculated for $1,391 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time $=38.8 \mathrm{~min}(923.1-884.4)$

Discarded OutFlow Max=0.09 cfs @ 12.49 hrs HW=250.26' (Free Discharge)
—1=Exfiltration (Controls 0.09 cfs)
Primary OutFlow Max=0.05 cfs @ 12.49 hrs HW=250.26' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Weir Controls $0.05 \mathrm{cfs} @ 0.25 \mathrm{fps}$)

Summary for Link AP1: To Wetlands

Inflow Area $=$	$182,426 \mathrm{sf}$,	0.74% Impervious,	Inflow Depth $>0.40 "$	for 2 -yr event
Inflow	$=$	$0.76 \mathrm{cfs} @$	12.51 hrs , Volume $=$	$6,028 \mathrm{cf}$
Primary	$=$	$0.76 \mathrm{cfs} @$	12.51 hrs , Volume $=$	$6,028 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP2: To Abutter

nflow Area =	107,837 s	3.38\% Impervious,	Depth > 0.47" for 2-yr event
Inflow	0.62 cfs @	12.41 hrs , Volume=	4,218 cf
Primary	0.62 cfs @	12.41 hrs, Volume=	$4,218 \mathrm{cf}, \mathrm{Atten}=0 \%, \mathrm{Lag}=0.0 \mathrm{mi}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP3: Abutter Depression

Inflow Area $=$	23,152 sf,	16.37% Impervious,	Inflow Depth $=0.01 "$	for 2 -yr event	
Inflow	$=$	$0.05 \mathrm{cfs} @$	12.49 hrs, Volume		28 cf
Primary	$=$	$0.05 \mathrm{cfs} @$	12.49 hrs , Volume $=$	28 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Total Runoff Area $=313,415$ sf Runoff Volume $=33,124$ cf Average Runoff Depth $=1.27$ "
$\mathbf{9 7 . 2 0 \%}$ Pervious $=304,629$ sf $\quad 2.80 \%$ Impervious $=8,786$ sf

Summary for Subcatchment 101S: Center Wetlands

Runoff $=3.15$ cfs @ 12.39 hrs, Volume= 17,950 cf, Depth> 1.18"
Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-yr Rainfall=4.92"

Summary for Subcatchment 102S: To Abutter

Runoff $=\quad 2.29$ cfs @ 12.32 hrs, Volume $=11,807 \mathrm{cf}$, Depth> 1.31"
Routed to Link AP2 : To Abutter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-yr Rainfall=4.92"

Summary for Subcatchment 103S: To Depression

Runoff $=1.03$ cfs @ 12.10 hrs, Volume= $3,368 \mathrm{cf}$, Depth> 1.75"

Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Description Paved parking, HSG B		
	1,600	98 P			
	19,361	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	2,191	98 R			
	23,152	67 W	Weighted Average		
	19,361		83.63\% Pervious Area		
	3,791		16.37\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	23,152 sf,	16.37\% Impervious,	Inflow Depth > 1.75" for 10-yr event
Inflow	1.03 cfs @	12.10 hrs , Volume=	3,368 cf
Outflow	0.97 cfs @	12.13 hrs , Volume=	3,352 cf, Atten= 6\%, Lag= 1.8 min
Discarded =	0.11 cfs @	12.13 hrs , Volume=	2,287 cf
Primary	0.86 cfs @	12.13 hrs , Volume=	1,064 cf
Routed to	3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev=250.31' @ 12.13 hrs Surf.Area= 1,763 sf Storage= 427 cf

Plug-Flow detention time $=33.2 \mathrm{~min}$ calculated for $3,345 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=30.4 \mathrm{~min}(886.2-855.8)$

Discarded OutFlow Max=0.11 cfs @ 12.13 hrs HW=250.31' (Free Discharge)
L1=Exfiltration (Controls 0.11 cfs)
Primary OutFlow Max=0.84 cfs @ 12.13 hrs HW=250.31' TW=0.00' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir (Weir Controls 0.84 cfs @ 0.67 fps)

Summary for Link AP1: To Wetlands

ow Area $=$	182,426 s	0.74\% Impervious,	Depth > 1.18" for $10-y r$ event
Inflow	3.15 cfs @	12.39 hrs , Volume=	17,950 cf
Primary	3.15 cfs @	12.39 hrs , Volume=	$17,950 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP2: To Abutter

Inflow Area =	107,837	3.38\% Impervious,	w Depth > 1.31" for 10-yr event
Inflow	2.29 cfs @	12.32 hrs , Volume=	11,807 cf
Primary	2.29 cfs @	12.32 hrs , Volume=	11,807 cf, Atten= 0\%, Lag= 0.0 mi

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP3: Abutter Depression

Inflow Area $=$	23,152 sf,	16.37% Impervious,	Inflow Depth $=0.55 "$	for $10-\mathrm{yr}$ event
Inflow	$=$	$0.86 \mathrm{cfs} @$	12.13 hrs , Volume $=$	$1,064 \mathrm{cf}$
Primary	$=$	$0.86 \mathrm{cfs} @$	12.13 hrs , Volume $=$	$1,064 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

$\begin{aligned} & \text { Total Runoff Area }=313,415 \mathrm{sf} \quad \text { Runoff Volume }=76,281 \mathrm{cf} \text { Average Runoff Depth }=2.92 " \\ & 97.20 \% \text { Pervious }=304,629 \mathrm{sf} \quad 2.80 \% \text { Impervious }=8,786 \mathbf{~ s f}\end{aligned}$

Summary for Subcatchment 101S: Center Wetlands

Runoff $=\quad 8.24$ cfs @ 12.36 hrs, Volume= $42,343 \mathrm{cf}$, Depth> 2.79"
Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.42"

Summary for Subcatchment 102S: To Abutter

Runoff $=\quad 5.66$ cfs @ 12.30 hrs, Volume $=\quad 26,912$ cf, Depth> 2.99"
Routed to Link AP2 : To Abutter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.42"

Area (sf)		CN D	Description		
1,237			Paved parking, HSG B >75\% Grass cover, Good, HSG B Woods, Good, HSG B Roofs, HSG B		
83,409					
20,785		61 55			
2,406		98			
	107,837	61 V	Weighted A	verage	
	104,194		96.62\% Per	vious Area	
	3,643		3.38\% Impe	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.3	50	0.0100	0.11		Sheet Flow, Grass: Short $n=0.150 \quad \mathrm{P} 2=3.27^{\prime \prime}$
12.7	446	0.0070	0.59		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
0.7	34	0.0300	- 0.87		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
20.7	530	Total			

Summary for Subcatchment 103S: To Depression

Runoff $=\quad 2.22$ cfs @ 12.09 hrs, Volume= 7,026 cf, Depth> 3.64"

Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Description		
	1,600	98 P			
	19,361	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	2,191	98 R	Roofs, HSG B		
	23,152	67	Weighted Average		
	19,361		83.63\% Pervious Area		
	3,791		16.37\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{r} \text { Velocity } \\ \text { (ft/sec) } \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	23,152 sf,	\% Impervious,	Inflow Depth > 3.64" for 50-yr event
Inflow	2.22 cfs @	12.09 hrs , Volume=	7,026 cf
Outflow	2.16 cfs @	12.11 hrs , Volume=	$6,960 \mathrm{cf}$, Atten $=3 \%$, Lag= 1.2 min
Discarded =	0.12 cfs @	12.11 hrs , Volume=	3,319 cf
Primary	2.04 cfs @	12.11 hrs , Volume=	3,641 cf
Routed to	P3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev=250.36' @ 12.11 hrs Surf.Area= 1,981 sf Storage= 519 cf

Plug-Flow detention time $=25.6 \mathrm{~min}$ calculated for $6,960 \mathrm{cf}$ (99% of inflow)
Center-of-Mass det. time $=20.0 \mathrm{~min}(854.1-834.1)$

Discarded OutFlow Max=0.12 cfs @ 12.11 hrs HW=250.36' (Free Discharge)
—1=Exfiltration (Controls 0.12 cfs)
Primary OutFlow Max=1.98 cfs @ 12.11 hrs HW=250.36' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Weir Controls 1.98 cfs @ 0.89 fps)

Summary for Link AP1: To Wetlands

Inflow Area =	18	0.74\% Impervious,	(Depth > 2.79" for 50-yr event
Inflow	8.24 cfs @	12.36 hrs , Volume=	42,343 cf
Primary	8.24 cfs @	12.36 hrs, Volume=	$42,343 \mathrm{cf}$, Atten= 0\%, Lag $=0.0 \mathrm{mi}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP2: To Abutter

Inflow Area $=$	$107,837 \mathrm{sf}$,	3.38%	Impervious,	Inflow Depth > $2.99 "$
Inflow	$=$	$5.66 \mathrm{cfs} @$	12.30 hrs , Volume $=$	$26,912 \mathrm{cf}$
Primary event	$=$	$5.66 \mathrm{cfs} @$	12.30 hrs , Volume $=$	$26,912 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP3: Abutter Depression

Inflow Area $=$	$23,152 \mathrm{sf}$,	16.37% Impervious,	Inflow Depth $=1.89 "$
Inflow	for 50 -yr event		
Primary	$=$	$2.04 \mathrm{cfs} @$	12.11 hrs , Volume $=$
$3,641 \mathrm{cf}$			
	$2.04 \mathrm{cfs} @$	12.11 hrs , Volume $=$	$3,641 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

> Total Runoff Area $=313,415 \mathrm{sf} \begin{aligned} \text { Runoff Volume } & =104,652 \mathrm{cf}\end{aligned}$ Average Runoff Depth $=4.01 "$
> 97.20% Pervious $=304,629 \mathrm{sf} \quad 2.80 \%$ Impervious $=8,786 \mathrm{sf}$

Summary for Subcatchment 101S: Center Wetlands

Runoff $=11.59$ cfs @ 12.35 hrs, Volume= 58,515 cf, Depth> $3.85^{\prime \prime}$
Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Paved parking, HSG B		
	943	98			
	102,339		Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	78,735	$\begin{array}{ll} 61 & > \\ 55 & \mathrm{~V} \end{array}$	Woods, Good, HSG B		
	409		Roofs, HSG B		
	182,426	59	Weighted Average 99.26\% Pervious Area 0.74\% Impervious Area		
	181,074				
	1,352				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
4.7	50	0.0300	0.18		Sheet Flow, Grass: Short n=0.150 P2=3.27"
12.5	524	0.0100	0.70		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
7.2	215	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
24.4	789	Total			

Summary for Subcatchment 102S: To Abutter

Runoff $=7.84$ cfs @ 12.30 hrs, Volume $=36,798 \mathrm{cf}$, Depth> 4.09"
Routed to Link AP2 : To Abutter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN	Description		
	1,237	98 P			
	83,409	61 >	>75\% Grass cover, Good, HSG B		
	20,785	55	Woods, Good, HSG B		
	2,406	98 R	Roofs, HSG B		
	107,837	61	Weighted Average		
104,194					
	3,643		96.62\% Pervious Area 3.38\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
7.3	50	0.0100	0.11		Sheet Flow,
					Grass: Short n=0.150 P2=3.27"
12.7	446	0.0070	0.59		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.7	34	0.0300	0.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
20.7	530	Total			

Summary for Subcatchment 103S: To Depression

Runoff $=\quad 2.96$ cfs @ 12.09 hrs, Volume $=9,339 \mathrm{cf}$, Depth> 4.84"

Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description		
	1,600	98 P	Paved parking, HSG B		
	19,361	61 >	>75\% Grass cover, Good, HSG B		
	2,191	98 R	Roofs, HSG B		
	23,152	67 V	Weighted Average		
	19,361		83.63\% Pervious Area		
	3,791		16.37\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	23,152 sf,	37\% Impervious,	Inflow Depth > 4.84" for 100-yr event
Inflow	2.96 cfs @	12.09 hrs , Volume=	9,339 cf
Outflow	2.89 cfs @	12.11 hrs, Volume=	9,247 cf, Atten= 3\%, Lag= 1.1 min
Discarded =	0.13 cfs @	12.11 hrs, Volume=	3,822 cf
Primary	2.76 cfs @	12.11 hrs , Volume=	5,425 cf
Routed to	AP3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev=250.39' @ 12.11 hrs Surf.Area= 2,093 sf Storage= 571 cf

Plug-Flow detention time $=22.9$ min calculated for 9,227 cf (99% of inflow)
Center-of-Mass det. time $=17.0 \mathrm{~min}(842.9-825.9)$

Discarded OutFlow Max=0.13 cfs @ 12.11 hrs HW=250.39' (Free Discharge)
L1=Exfiltration (Controls 0.13 cfs)
Primary OutFlow Max=2.69 cfs @ 12.11 hrs HW=250.39' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Weir Controls 2.69 cfs @ 0.99 fps)

Summary for Link AP1: To Wetlands

Inflow Area =	182,426 sf,	0.7	w Depth > 3.85" for 100-yr event
In	11.59 cfs @	12.35 hrs , Volume=	58,515 cf
Primary	11.59 cfs @	12.35 hrs , Volume=	$58,515 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~m}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP2: To Abutter

Inflow Area =	107,837 sf,	3.38\% Impervious,	Inflow Depth > 4.09" for 100-yr event
Inflow	7.84 cfs @	12.30 hrs , Volume=	36,798 cf
Primary	7.84 cfs @	12.30 hrs , Volume=	36,798 cf, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Summary for Link AP3: Abutter Depression

Inflow Area $=$	23,152 sf,	16.37% Impervious,	Inflow Depth $=2.81 " ~ f o r ~$	100 -yr event
Inflow	$=$	$2.76 \mathrm{cfs} @$	12.11 hrs , Volume $=$	$5,425 \mathrm{cf}$
Primary	$=$	$2.76 \mathrm{cfs} @$	12.11 hrs , Volume $=$	$5,425 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

19227 - PostDevelopment

Prepared by Howard Stein Hudson
Printed 4/11/2022
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)
1	2-Inch	Type III 24-hr	Default	24.00	1	2.00	2
2	$2-y r$	Type III 24-hr	Default	24.00	1	3.27	2
3	10-yr	Type III 24-hr	Default	24.00	1	4.92	2
4	$50-\mathrm{-yr}$	Type III 24-hr	Default	24.00	1	7.42	2
5	100-yr	Type III 24-hr	Default	24.00	1	8.86	2

19227 - PostDevelopment

Prepared by Howard Stein Hudson
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq-ft)}$	CN	Description $($ subcatchment-numbers)
182,276	61	$>75 \%$ Grass cover, Good, HSG B (A1, A2, A3, A5, A6, A7, A8, R1, R2, R3, R4, R5, R6, R7, R8, R9, S3, S4, S8)
74,339	98	Paved parking, HSG B (A6, A8, R1, R2, R3, R4, R5, R6, R7, R8, R9, S3, S4, S8)
38,131	98	Roofs, HSG B (A3, A4, A5, A6, R2, R3, R4, R5, R6, R7, R8, R9)
18,669	55	Woods, Good, HSG B (A5, A6, A8)
$\mathbf{3 1 3 , 4 1 5}$	$\mathbf{7 4}$	TOTAL AREA

19227 - PostDevelopment

Prepared by Howard Stein Hudson
Printed 4/11/2022
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq-ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
313,415	HSG B	A1, A2, A3, A4, A5, A6, A7, A8, R1, R2, R3, R4, R5, R6, R7, R8, R9, S3, S4, S8
0	HSG C	
0	HSG D	
0	Other	
313,415		TOTAL AREA

19227 - PostDevelopment

Prepared by Howard Stein Hudson
Printed 4/11/2022
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC

Ground Covers (all nodes)						
$\begin{array}{r} \text { HSG-A } \\ \text { (sq-ft) } \end{array}$	HSG-B (sq-ft)	$\begin{array}{r} \text { HSG-C } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	HSG-D (sq-ft)	Other (sq-ft)	$\begin{array}{r} \text { Total } \\ \text { (sq-ft) } \end{array}$	Ground Cover
0	182,276	0	0	0	182,276	>75\% Grass
						cover, Good
0	74,339	0	0	0	74,339	Paved parking
0	38,131	0	0	0	38,131	Roofs
0	18,669	0	0	0	18,669	Woods, Good
0	313,415	0	0	0	313,415	TOTAL AREA

Sub
Nun

19227 - PostDevelopment

Prepared by Howard Stein Hudson
Printed 4/11/2022
HydroCAD® 10.10-6a s/n M24582 © 2020 HydroCAD Software Solutions LLC
Page 6

| Line\# | Node
 Number | In-Invert
 (feet) | Out-Invert
 (feet) | Length
 (feet) | Slope
 (ft/ft) | n | Width
 (inches) | Diam/Height
 (inches) |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | Inside-Fill |
| ---: |
| (inches) |

Time span=2.00-24.00 hrs, dt=0.02 hrs, 1101 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: To Area Drain

SubcatchmentA2: To Exterior

Subcatchment A3: To Exterior

Subcatchment A4: To Roof Drain

Subcatchment A5: To Abutter

SubcatchmentA6: To Abutter

SubcatchmentA7: To Infiltration Basin

Subcatchment A8: To Exterior

SubcatchmentR1: To CB\#1

SubcatchmentR2: To CB-2

Subcatchment R3: To RGB

SubcatchmentR4: To CB-4

Subcatchment R5: To Foxhole

Subcatchment R6: To CB-6

SubcatchmentR7: To CB-5

Subcatchment R8: To RGB 2

Runoff Area $=2,664$ sf 0.00% Impervious Runoff Depth >0.07 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.00 \mathrm{cfs} 16 \mathrm{cf}$

Runoff Area $=1,761$ sf 0.00% Impervious Runoff Depth >0.07 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.00 \mathrm{cfs} 11 \mathrm{cf}$

Runoff Area=3,301 sf 50.05% Impervious Runoff Depth >0.56 " Tc=6.0 min CN=80 Runoff=0.05 cfs 154 cf

Runoff Area $=2,082$ sf 100.00% Impervious Runoff Depth >1.77 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=0.09 cfs 308 cf

Runoff Area=26,605 sf 5.66% Impervious Runoff Depth>0.10" Flow Length=212' Tc=11.8 min CN=63 Runoff=0.02 cfs 224 cf

Runoff Area $=36,823$ sf 7.73% Impervious Runoff Depth $>0.10^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=63$ Runoff $=0.02 \mathrm{cfs} 311 \mathrm{cf}$

Runoff Area $=18,226$ sf 0.00% Impervious Runoff Depth $>0.07{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.00 \mathrm{cfs} 111 \mathrm{cf}$

Runoff Area=30,601 sf 1.56% Impervious Runoff Depth >0.06 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=60$ Runoff= 0.01 cfs 154 cf

Runoff Area $=11,152$ sf 70.59% Impervious Runoff Depth >0.90 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=0.27 \mathrm{cfs} 841 \mathrm{cf}$

Runoff Area=22,269 sf 62.49\% Impervious Runoff Depth>0.74" Tc=6.0 min CN=84 Runoff=0.43 cfs $1,379 \mathrm{cf}$

Runoff Area $=10,217$ sf 71.15% Impervious Runoff Depth >0.90 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=0.25 \mathrm{cfs} 770 \mathrm{cf}$

Runoff Area $=14,887$ sf 66.43% Impervious Runoff Depth >0.85 " Tc=6.0 min CN=86 Runoff $=0.33$ cfs $1,052 \mathrm{cf}$

Runoff Area $=33,967$ sf 52.12% Impervious Runoff Depth >0.56 " Flow Length=327' Tc=10.1 min CN=80 Runoff=0.41 cfs $1,588 \mathrm{cf}$

Runoff Area $=26,016$ sf 47.47% Impervious Runoff Depth >0.52 " Flow Length=248' Tc=16.0 min CN=79 Runoff=0.24 cfs $1,128 \mathrm{cf}$

Runoff Area $=31,901$ sf 39.74% Impervious Runoff Depth $>0.41^{\prime \prime}$ Flow Length=303' Tc=11.9 min CN=76 Runoff=0.24 cfs $1,096 \mathrm{cf}$

Runoff Area $=17,230$ sf 63.94% Impervious Runoff Depth >0.79 " Tc=6.0 $\mathrm{min} \mathrm{CN}=85$ Runoff $=0.36 \mathrm{cfs} 1,140 \mathrm{cf}$

Subcatchment R9: To RGB 1

SubcatchmentS3: To Swale

SubcatchmentS4: To Swale

SubcatchmentS8: To Swale

Reach SW3:

Reach SW8:

Pond AD:

Pond CB1: CB\#1

Pond CB2:

Pond CB4:

Pond CB5:

Pond CB6:

Pond CB7:

Pond DMH1:

Pond DMH3:

Pond DMH4:

Pond DMH5:

Pond DMH6:

Runoff Area=7,051 sf 91.07\% Impervious Runoff Depth>1.48" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=95$ Runoff=0.27 cfs 870 cf

Runoff Area=10,077 sf 25.91\% Impervious Runoff Depth >0.27 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=71$ Runoff=0.04 cfs 223 cf

Runoff Area=1,346 sf 29.12\% Impervious Runoff Depth>0.29" Tc=6.0 min $\mathrm{CN}=72$ Runoff=0.01 cfs 33 cf

Runoff Area $=5,239$ sf 34.13% Impervious Runoff Depth >0.35 " Tc=6.0 min $\mathrm{CN}=74$ Runoff=0.04 cfs 152 cf

Avg. Flow Depth=0.13' Max Vel=0.81 fps Inflow=0.29 cfs 993 cf $\mathrm{n}=0.041 \mathrm{~L}=501.0^{\prime} \quad \mathrm{S}=0.0100$ '//' Capacity=28.59 cfs Outflow=0.20 cfs 981 cf

Avg. Flow Depth=0.32' Max Vel=0.23 fps Inflow=0.31 cfs 1,023 cf $\mathrm{n}=0.240 \mathrm{~L}=232.0^{\prime} \mathrm{S}=0.0102$ '/' Capacity=4.93 cfs Outflow=0.18 cfs 1,009 cf

Peak Elev=248.62' Inflow=0.00 cfs 16 cf 8.0" Round Culvert $n=0.011$ L=26.4' $S=0.0049$ '/' Outflow=0.00 cfs 16 cf

Peak Elev=249.28' Inflow=0.27 cfs 841 cf
12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=93.3^{\prime} \mathrm{S}=0.0050$ '/' Outflow=0.27 cfs 841 cf

Peak Elev=251.53' Inflow=0.43 cfs 1,379 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=73.9^{\prime} \mathrm{S}=0.0100$ '/' Outflow=0.43 cfs $1,379 \mathrm{cf}$

Peak Elev=248.11' Inflow=0.33 cfs 1,052 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=14.5$ ' $\mathrm{S}=0.0193$ '/' Outflow=0.33 cfs $1,052 \mathrm{cf}$

Peak Elev=250.55' Inflow=0.24 cfs 1,096 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=8.5^{\prime} \mathrm{S}=0.0118$ '/' Outflow=0.24 cfs $1,096 \mathrm{cf}$

Peak Elev=248.58' Inflow=0.24 cfs 1,128 cf 12.0" Round Culvert $n=0.011$ L=6.3' $S=0.0063$ '/' Outflow=0.24 cfs $1,128 \mathrm{cf}$

Peak Elev=248.21' Inflow=0.21 cfs 1,014 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=88.3^{\prime} \mathrm{S}=0.0057$ '/' Outflow=0.21 cfs $1,014 \mathrm{cf}$

Peak Elev=248.50' Inflow=0.27 cfs 857 cf Outflow $=0.27$ cfs 857 cf

Peak Elev=247.67' Inflow=0.21 cfs 1,014 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=68.2$ ' $\mathrm{S}=0.0051$ '/' Outflow=0.21 cfs 1,014 cf

Peak Elev=247.08' Inflow=0.50 cfs 2,066 cf 24.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=34.6^{\prime} \mathrm{S}=0.0049$ '/' Outflow=0.50 cfs 2,066 cf

Peak Elev=251.98' Inflow=0.51 cfs 2,150 cf 15.0" Round Culvert n=0.011 L=116.8' S=0.0102 '/' Outflow=0.51 cfs 2,150 cf

Peak Elev=250.08' Inflow=0.70 cfs 3,245 cf 18.0" Round Culvert $n=0.011$ L=160.8' $S=0.0100$ '/' Outflow=0.70 cfs $3,245 \mathrm{cf}$

Pond DMH7:

Peak Elev=247.98' Inflow=0.88 cfs 4,373 cf 24.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=111.5$ ' $\mathrm{S}=0.0085$ '//' Outflow=0.88 cfs $4,373 \mathrm{cf}$

Pond EX: Existing Abutter Depression Peak Elev=249.82' Storage=5 cf Inflow=0.02 cfs 224 cf Discarded $=0.01$ cfs 224 cf Primary $=0.00$ cfs 0 cf Outflow= 0.01 cfs 224 cf

Pond HW2: Peak Elev=253.33' Inflow=0.51 cfs 2,150 cf 15.0" Round Culvert n=0.013 L=14.6' S=0.0856 '/' Oufflow=0.51 cfs 2,150 cf

Pond IB1: Infiltration Basin \#1 Peak Elev=247.01' Storage=112 cf Inflow=1.77 cfs 8,137 cf Discarded=1.65 cfs 8,134 cf Primary= 0.00 cfs 1 cf Secondary=0.00 cfs 0 cf Outflow=1.65 cfs 8,135 cf

Pond SIS1: Stormtech

Pond SIS2:

Link AP1: To Wetlands

Link AP2: To Offsite

Link AP3: Abutter Depression

Total Runoff Area $=313,415$ sf Runoff Volume $=11,560$ cf Average Runoff Depth $=0.44$ " $\mathbf{6 4 . 1 1 \%}$ Pervious $=\mathbf{2 0 0 , 9 4 5} \mathbf{s f} \quad 35.89 \%$ Impervious $=112,470$ sf

Summary for Subcatchment A1: To Area Drain

Runoff $=\quad 0.00$ cfs @ 12.50 hrs, Volume= $\quad 16$ cf, Depth> 0.07"
Routed to Pond AD

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN Description			
	2,664	61	75\% Gras	cover, Go	od, HSG B
2,664		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A2: To Exterior

Runoff $=\quad 0.00$ cfs @ 12.50 hrs, Volume= 11 cf , Depth> 0.07"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	rea (sf)	CN Description			
	1,761	61	75\% Gras	cover, Good	od, HSG B
1,761		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A3: To Exterior

Runoff $=\quad 0.05$ cfs @ 12.10 hrs, Volume= 154 cf , Depth> $0.56{ }^{\prime \prime}$
Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 1,649 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,652 | 98 | Roofs, HSG B |

Summary for Subcatchment A4: To Roof Drain

Runoff $=0.09$ cfs @ 12.08 hrs, Volume= 308 cf , Depth> 1.77"

Routed to Pond SIS2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN Description			
	2,082	98 Roofs, HSG B			
	2,082	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment A5: To Abutter

Runoff $=0.02$ cfs @ 12.51 hrs, Volume= 224 cf, Depth> 0.10"
Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 23,897 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,201 | 55 | Woods, Good, HSG B |
| 1,507 | 98 | Roofs, HSG B |

Summary for Subcatchment A6: To Abutter

Runoff $=\quad 0.02$ cfs @ 12.42 hrs, Volume= 311 cf , Depth> 0.10"
Routed to Link AP2 : To Offsite
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description		
	1,281	98 P	Paved parking, HSG B		
	25,992	61 >	>75\% Grass cover, Good, HSG B		
	7,984	55	Woods, Good, HSG B		
	1,566	98 R	Roofs, HSG B		
	36,823	63 V	Weighted Average		
	33,976		92.27\% Pervious Area		
	2,847		7.73\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment A7: To Infiltration Basin

Runoff $=\quad 0.00$ cfs @ 12.50 hrs, Volume= 111 cf , Depth> 0.07"
Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	rea (sf)	CN Description			
	18,226	61	>75\% Gras	s cover, Go	od, HSG B
18,226		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A8: To Exterior

Runoff $=\quad 0.01$ cfs @ 13.76 hrs, Volume= 154 cf, Depth> 0.06"
Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description Paved parking, HSG B		
	476	98 P			
	20,641	61 >	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	9,484	55	Woods, Good, HSG B		
	30,601	60	Weighted Average 98.44\% Pervious Area 1.56\% Impervious Area		
	30,125				
	476				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entr

Summary for Subcatchment R1: To CB\#1

Runoff $=\quad 0.27$ cfs @ 12.09 hrs, Volume= 841 cf , Depth> 0.90"

Routed to Pond CB1 : CB\#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

Area (sf)	CN	Description
7,872	98	Paved parking, HSG B
3,280	61	>75\% Grass cover, Good, HSG B
11,152	87	Weighted Average
3,280		29.41\% Pervious Area
7,872		70.59% Impervious Area
Tc	Length	Slope
Velocity	Capacity	Description
(min)	(feet)	(ft/ft)
6.0	(ft/sec)	(cfs)

Summary for Subcatchment R2: To CB-2

Runoff $=\quad 0.43$ cfs @ 12.09 hrs, Volume= $\quad 1,379 \mathrm{cf}$, Depth> 0.74" Routed to Pond CB2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

Area (sf)	CN	Description	
8,993	98	Paved parking, HSG B	
8,353	61	>75\% Grass cover, Good, HSG B	
4,923	98	Roofs, HSG B	
22,269	84	Weighted Average	
8,353		37.51\% Pervious Area	
13,916	62.49% Impervious Area		
Tc Length Slope Velocity Capacity (fin) (feet) (ft/ft) (ft/sec) (cfs)			
6.0		Direct Entry,	

Summary for Subcatchment R3: To RGB

Runoff $=\quad 0.25$ cfs @ 12.09 hrs, Volume= 770 cf, Depth> 0.90"
Routed to Reach SW3 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Pescription		
	5,386	98 P			
	2,948	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	1,883	98 R	Roofs, HSG		
	10,217	87	Weighted Average		
	2,948		28.85\% Pervious Area		
	7,269		71.15\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R4: To CB-4

Runoff $=\quad 0.33$ cfs @ 12.09 hrs, Volume= 1,052 cf, Depth> 0.85"
Routed to Pond CB4 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description		
	7,280	98 P			
	4,998	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	2,609	98 R	Roofs, HSG		
	14,887	86	Weighted Average		
	4,998		33.57\% Pervious Area		
	9,889		66.43\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R5: To Foxhole

Runoff $=\quad 0.41 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume= $\quad 1,588 \mathrm{cf}$, Depth> $0.56{ }^{\prime \prime}$

Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

Summary for Subcatchment R6: To CB-6

Runoff $=\quad 0.24$ cfs @ 12.25 hrs, Volume= $\quad 1,128 \mathrm{cf}$, Depth> 0.52"

Routed to Pond CB6 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

Summary for Subcatchment R7: To CB-5

Runoff $=0.24$ cfs @ 12.19 hrs, Volume $=1,096 \mathrm{cf}$, Depth> $0.41^{\prime \prime}$
Routed to Pond CB5 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

Summary for Subcatchment R8: To RGB 2

Runoff $=\quad 0.36$ cfs @ 12.09 hrs, Volume= $1,140 \mathrm{cf}$, Depth> 0.79"
Routed to Pond HW2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description		
	6,729	98 P			
	6,213	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	4,288	98 R	Roofs, HSG		
	17,230	85	Weighted Average		
	6,213		36.06\% Pervious Area		
	11,017		63.94\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{r} \text { Velocity } \\ \text { (ft/sec) } \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R9: To RGB 1

Runoff $=0.27$ cfs @ 12.09 hrs, Volume= 870 cf , Depth> 1.48"
Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Paved parking, HSG B		
	4,963	98 P			
	630	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	1,458	98 R	Roofs, HSG B		
	7,051	95 V	Weighted Average		
	630		8.93\% Pervious Area		
	6,421		91.07\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S3: To Swale

Runoff $=0.04$ cfs @ 12.13 hrs, Volume= 223 cf , Depth> 0.27"
Routed to Reach SW3 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description		
	$\begin{aligned} & \hline 2,611 \\ & 7,466 \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 98 & P \\ 61 & > \end{array}$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	$\begin{array}{r} 10,077 \\ 7,466 \\ 2,611 \end{array}$	$71 \begin{aligned} & \text { W } \\ & 7 \\ & \\ & \\ & \end{aligned}$	Weighted Average 74.09\% Pervious Area 25.91\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S4: To Swale

Runoff $=\quad 0.01$ cfs @ 12.12 hrs, Volume= 33 cf , Depth> 0.29"

Routed to Pond CB7 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Description		
	392	98 P	Paved parking, HSG B		
	954	$61>$	>75\% Grass cover, Good, HSG B		
	1,346	72 V	Weighted Average		
	954		70.88\% Pervious Area		
	392		29.12\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S8: To Swale

Runoff $=0.04$ cfs @ 12.11 hrs, Volume= 152 cf , Depth> 0.35"
Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Inch Rainfall=2.00"

	Area (sf)	CN D	Paved parking, HSG B		
	1,788	98 P			
	3,451	$61>$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	5,239	74	Weighted Average		
	3,451		65.87\% Pervious Area		
	1,788		34.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Reach SW3:

Inflow Area $=\quad 20,294$ sf, 48.68% Impervious, Inflow Depth > 0.59" for 2-Inch event
Inflow $=0.29 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= 993 cf

Outflow = $0.20 \mathrm{cfs} @ 12.19 \mathrm{hrs}$, Volume $=\quad 981 \mathrm{cf}$, Atten= 30\%, Lag= 5.4 min
Routed to Pond CB7 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity $=0.81 \mathrm{fps}$, Min. Travel Time= 10.3 min
Avg. Velocity $=0.32 \mathrm{fps}$, Avg. Travel Time $=26.5 \mathrm{~min}$
Peak Storage= 124 cf @ 12.19 hrs
Average Depth at Peak Storage= 0.13' , Surface Width= 2.28'
Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 28.59 cfs
1.50 ' x 1.50' deep channel, $\mathrm{n}=0.041$ Riprap, 2-inch

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=501.0' Slope= 0.0100 '/'
Inlet Invert= 256.12', Outlet Invert= 251.10'

Summary for Reach SW8:

Inflow Area $=\quad 12,290 \mathrm{sf}, 66.79 \%$ Impervious, Inflow Depth > 1.00" for 2-Inch event Inflow $=0.31$ cfs @ 12.09 hrs , Volume $=1,023 \mathrm{cf}$
Outflow = $0.18 \mathrm{cfs} @ 12.20 \mathrm{hrs}$, Volume $=1,009 \mathrm{cf}$, Atten= 41%, Lag $=7.0 \mathrm{~min}$
Routed to Pond HW2 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity $=0.23 \mathrm{fps}$, Min. Travel Time $=16.8 \mathrm{~min}$
Avg. Velocity $=0.09 \mathrm{fps}$, Avg. Travel Time $=44.6 \mathrm{~min}$
Peak Storage= 183 cf @ 12.20 hrs
Average Depth at Peak Storage= 0.32^{\prime}, Surface Width= 3.42'
Bank-Full Depth $=1.50$ ' Flow Area= 9.0 sf, Capacity $=4.93 \mathrm{cfs}$
1.50 ' x 1.50 ' deep channel, $n=0.240$ Sheet flow over Dense Grass

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=232.0' Slope=0.0102 '/'
Inlet Invert= 255.37', Outlet Invert= 253.00'

Summary for Pond AD:

Inflow Area $=$	$2,664 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth $>0.07 "$	for 2 -Inch event
Inflow	$=$	$0.00 \mathrm{cfs} @$	12.50 hrs , Volume=	16 cf
Outflow	$=$	$0.00 \mathrm{cfs} @$	12.50 hrs , Volume=	16 cf , Atten= $=0 \%$, Lag= 0.0 min
Primary	$=$	$0.00 \mathrm{cfs} @$	12.50 hrs , Volume $=$	16 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.62' @ 12.50 hrs
Flood Elev=250.75'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$248.60 '$	$8.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=26.4^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= 248.60' $/ 248.47 \prime \mathrm{~S}=0.0049 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.35 sf	

Primary OutFlow Max=0.00 cfs @ 12.50 hrs HW=248.62' TW=248.40' (Dynamic Tailwater)
_1=Culvert (Barrel Controls 0.00 cfs @ 0.41 fps)

Summary for Pond CB1: CB\#1

Inflow Area $=\quad 11,152$ sf, 70.59% Impervious, Inflow Depth >0.90 " for 2-Inch event
Inflow $=0.27$ cfs @ 12.09 hrs , Volume= 841 cf
Outflow = 0.27 cfs @ 12.09 hrs , Volume $=\quad 841 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=\quad 0.27$ cfs @ 12.09 hrs , Volume= 841 cf Routed to Pond DMH1 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.28' @ 12.09 hrs
Flood Elev=251.50'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.00^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=93.3^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 249.00 ' $/ 248.53^{\prime} \mathrm{S}=0.0050 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf	

Primary OutFlow Max=0.27 cfs @ 12.09 hrs HW=249.28' TW=248.50' (Dynamic Tailwater)
①=Culvert (Barrel Controls 0.27 cfs @ 2.26 fps)

Summary for Pond CB2:

 Routed to Pond SIS2 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 251.53' @ 12.09 hrs
Flood Elev= 254.02'

Device	Routing	Invert	Outlet Devices
\#1	Primary	251.20'	12.0" Round Culvert
			$\mathrm{L}=73.9^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 251.20' / 250.46' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.43 cfs @ 12.09 hrs HW=251.52' TW=249.06' (Dynamic Tailwater)
$\left\llcorner_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.43\right.$ cfs @ 1.94 fps)

Summary for Pond CB4:

Inflow Area =	14,887	66.43\% Impervious,	Inflow Depth	0.85" for 2-Inch event
Inflow	0.33 cfs @	12.09 hrs , Volume=	1,052 cf	
Outflow	0.33 cfs @	12.09 hrs , Volume=	1,052 cf	f, Atten= 0\%, Lag= 0.0 min
Primary	0.33 cfs @	12.09 hrs , Volume=	1,052 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.11' @ 12.09 hrs
Flood Elev= 250.69'

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :--- | :--- | :--- |
| $\# 1$ | Primary | 247.83^{\prime} | $12.0^{\prime \prime}$ Round Culvert |
| | | $L=14.5^{\prime}$ RCP, sq.cut end projecting, Ke=0.500 | |
| | | Inlet / Outlet Invert= $247.83^{\prime} / 247.55$ ' $\mathrm{S}=0.0193 \mathrm{Cc}=0.900$ | |
| | | $\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$ | |

Primary OutFlow Max=0.33 cfs @ 12.09 hrs HW=248.11' TW=247.07' (Dynamic Tailwater)
—1 $^{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.33$ cfs @ 1.81 fps)

Summary for Pond CB5:

Inflow Area $=\quad 31,901$ sf, 39.74\% Impervious, Inflow Depth > 0.41" for 2-Inch event Inflow $=0.24$ cfs @ 12.19 hrs , Volume= $1,096 \mathrm{cf}$
Outflow = 0.24 cfs @ 12.19 hrs , Volume $=1,096 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary $=0.24$ cfs @ 12.19 hrs , Volume $=\quad 1,096 \mathrm{cf}$ Routed to Pond DMH6 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.55' @ 12.19 hrs
Flood Elev=252.45'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	250.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		L=8.5'RCP, sq.cut end projecting, Ke= $=0.500$	
		Inlet / Outlet Invert= $250.30^{\prime} / 250.20^{\prime} \quad \mathrm{S}=0.0118 \mathrm{Cl} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.24 cfs @ 12.19 hrs HW=250.55' TW=250.07' (Dynamic Tailwater)
①=Culvert (Barrel Controls 0.24 cfs @ 2.27 fps)

Summary for Pond CB6:

 Routed to Pond DMH7:

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.58' @ 12.25 hrs
Flood Elev= 250.82'

Device	Routing	Invert	Outlet Devices
\#1	Primary	248.30'	12.0" Round Culvert
			$\mathrm{L}=6.3$ R RCP , sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 248.30' / 248.26' S=0.0063 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.24 cfs @ 12.25 hrs HW=248.58' TW=247.97' (Dynamic Tailwater)
①=Culvert (Barrel Controls 0.24 cfs @ 1.96 fps)

Summary for Pond CB7:

Inflow Area $=$	21,640 sf, 47.47% Impervious,	Inflow Depth $>0.56 "$	for 2 -Inch event	
Inflow	$=$	$0.21 \mathrm{cfs} @$	12.19 hrs , Volume=	$1,014 \mathrm{cf}$
Outflow	$=$	$0.21 \mathrm{cfs} @$	12.19 hrs , Volume=	$1,014 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary	$=$	$0.21 \mathrm{cfs} @$	12.19 hrs , Volume $=$	$1,014 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.21' @ 12.19 hrs
Flood Elev=253.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$248.00 '$	$18.0^{\prime \prime}$ Round Culvert
		$L=88.3^{\prime} R C P$, sq.cut end projecting, Ke= 0.500	
		Inlet / Outlet Invert= 248.00 ' / 247.50' $\mathrm{S}=0.0057 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=0.21 cfs @ 12.19 hrs HW=248.21' TW=247.67' (Dynamic Tailwater)
①=Culvert (Outlet Controls 0.21 cfs @ 2.07 fps)

Summary for Pond DMH1:

 Routed to Pond SIS1 : Stormtech

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.50' @ 12.09 hrs
Flood Elev=252.50'

Device	Routing	Invert	Outlet Devices		
\#1	Primary	$248.40 '$	12.0" Round MANIFOLD		
			$\mathrm{L}=6.0^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.40' / 248.35' S=0.0083 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area $=0.79 \mathrm{sf}$		
\#2	Primary	248.28'	24.0" Round ISOLATOR		
			$\mathrm{L}=4.0^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert=248.28' / 248.25' S=0.0075 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf		
Primary OutFlow Max=0.27 cfs @ 12.09 hrs HW=248.50' TW=247.77' (Dynamic Tailwater) -1=MANIFOLD (Barrel Controls 0.04 cfs @ 1.41 fps) 2=ISOLATOR (Barrel Controls 0.23 cfs @ 1.79 fps)					

Summary for Pond DMH3:

Inflow Area $=$	21,640 sf, 47.47% Impervious,	Inflow Depth $>0.56 "$	for 2 -Inch event
Inflow	$=$	$0.21 \mathrm{cfs} @$	12.19 hrs , Volume=
Outflow	$=$	$0.21 \mathrm{cfs} @$	12.19 hrs , Volume=
Primary	$=$	$0.21 \mathrm{cfs} @$	12.19 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.67' @ 12.19 hrs
Flood Elev=251.98'

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :--- | :--- | :--- |
| $\# 1$ | Primary | 247.45^{\prime} | $18.0^{\prime \prime}$ Round Culvert |
| | | $L=68.2^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$ | |
| | | Inlet / Outlet Invert= $247.45^{\prime} / 247.10^{\prime} \quad \mathrm{S}=0.0051 \mathrm{I} / \mathrm{Cc}=0.900$ | |
| | | $\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 1.77 sf | |

Primary OutFlow Max=0.21 cfs @ 12.19 hrs HW=247.67' TW=247.07' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.21 cfs @ 2.00 fps)

Summary for Pond DMH4:

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=310)

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.08' @ 12.11 hrs
Flood Elev=251.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	246.60'	24.0" Round Culvert
			$\mathrm{L}=34.6{ }^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 246.60' / 246.43' S=0.0049 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=0.50 cfs @ 12.11 hrs HW=247.08' TW=247.01' (Dynamic Tailwater)
$\complement_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{0.50}$ cfs @ 1.31 fps)

Summary for Pond DMH5:

Inflow Area =	29,520	mervious,	Inlow Depth	0.87" for 2-Inch event
Inflow	0.51 cfs @	12.11 hrs , Volume=	2,150 cf	
Outflow	0.51 cfs @	12.11 hrs , Volume=	2,150 cf	f, Atten= 0\%, Lag= 0.0 min
Primary	0.51 cfs @	12.11 hrs, Volume=	2,150 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 251.98' @ 12.11 hrs
Flood Elev=254.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	251.65^{\prime}	$15.0^{\prime \prime}$ Round Culvert
		$L=116.8^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $251.655^{\prime} / 250.46^{\prime} \quad \mathrm{S}=0.0102 \mathrm{Cl} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.23 \mathrm{sf}$	

Primary OutFlow Max=0.50 cfs @ 12.11 hrs HW=251.98' TW=250.07' (Dynamic Tailwater)
—1 $_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.50$ cfs @ 1.95 fps)

Summary for Pond DMH6:
 Routed to Pond DMH7 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.08' @ 12.13 hrs
Flood Elev= 252.93'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.71^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=160.8^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $249.71^{\prime} / 248.10^{\prime} \quad \mathrm{S}=0.0100 \mathrm{Cl} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=0.69 cfs @ 12.13 hrs HW=250.08' TW=247.98' (Dynamic Tailwater)
①=Culvert (Inlet Controls 0.69 cfs @ 2.07 fps)

Summary for Pond DMH7:

 Routed to Pond IB1 : Infiltration Basin \#1

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.98' @ 12.17 hrs
Flood Elev= 251.25'

Device	Routing	Invert	Outlet Devices
\#1	Primary	247.60'	24.0" Round Culvert
			$\mathrm{L}=111.5^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 247.60' / 246.65' S=0.0085 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=0.88 cfs @ 12.17 hrs HW=247.98' TW=247.01' (Dynamic Tailwater)
—1 $^{\text {=Culvert }}$ (Inlet Controls 0.88 cfs @ 2.11 fps)

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	26,605 sf,	5.66\% Impervious,	Inflow Depth > 0.10" for 2-Inch event
Inflow	0.02 cfs @	12.51 hrs , Volume=	224 cf
Outflow	0.01 cfs @	12.70 hrs , Volume=	224 cf, Atten= 23\%, Lag= 11.2 min
Discarded =	0.01 cfs @	12.70 hrs , Volume=	224 cf
Primary	0.00 cfs @	2.00 hrs , Volume=	0 cf
Routed to	AP3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.82' @ 12.70 hrs Surf.Area= 213 sf Storage= 5 cf
Plug-Flow detention time $=3.3$ min calculated for 223 cf (100% of inflow)
Center-of-Mass det. time $=2.4$ min (994.7-992.2)

Discarded OutFlow Max=0.01 cfs @ 12.70 hrs HW=249.82' (Free Discharge)
L1=Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=0.00 cfs @ 2.00 hrs HW=249.80' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond HW2:

[62] Hint: Exceeded Reach SW8 OUTLET depth by 0.06 ' @ 12.06 hrs

Inflow Area $=$	29,520 sf, 65.13% Impervious,	Inflow Depth $>0.87 "$	for 2 -Inch event
Inflow	$=$	$0.51 \mathrm{cfs} @$	12.11 hrs , Volume
Outflow	$=$	$0.51 \mathrm{cfs} @$	12.11 hrs , Volume $=$
Primary	$=$	$0.51 \mathrm{cfs} @$	12.11 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=253.33' @ 12.11 hrs
Flood Elev= 254.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	253.00'	15.0" Round Culvert
			$L=14.6$ ' RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 253.00' / 251.75' S=0.0856 '/l' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.50 cfs @ 12.11 hrs HW=253.33' TW=251.98' (Dynamic Tailwater)
—1 $^{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.50 \mathrm{cfs} @ 1.95 \mathrm{fps}$)

Summary for Pond IB1: Infiltration Basin \#1

[80] Warning: Exceeded Pond DMH4 by 0.31 ' @ 2.00 hrs (0.76 cfs 2,649 cf)

Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.01' @ 12.21 hrs Surf.Area= 8,551 sf Storage= 112 cf
Plug-Flow detention time $=0.9$ min calculated for 8,135 cf (100% of inflow)
Center-of-Mass det. time $=0.7 \mathrm{~min}(867.2-866.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	247.00^{\prime}	$32,758 \mathrm{cf}$	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
247.00	8,532	373.0	0	0	8,532
248.00	10,075	398.2	9,293	9,293	10,126
249.00	11,718	423.3	10,886	20,179	11,817
250.00	13,461	448.4	12,579	32,758	13,612

Device	Routing	Invert	Outlet Devices
\#1	Discarded	247.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 244.93' Phase-In= 0.01'
\#2	Primary	247.00'	18.0" Round Culvert L=62.2' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=247.00' 246.00 ' $=0.0161$ '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area 1.77 sf
\#3	Device 2	247.00'	6.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 2	248.20'	2.0" x 2.0" Horiz. Orifice/Grate X 8.00 columns
			X 8 rows C= 0.600 in 24.0 " x 24.0" Grate (44% open area)
			Limited to weir flow at low heads
\#5	Secondary	249.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=1.65 cfs @ 12.21 hrs HW=247.01' (Free Discharge)
—1=Exfiltration (Controls 1.65 cfs)
Primary OutFlow Max=0.00 cfs @ $12.21 \mathrm{hrs} \mathrm{HW}=247.01^{\prime}$ TW=0.00' (Dynamic Tailwater)
— $2=$ Culvert (Passes 0.00 cfs of 0.00 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 0.00 cfs @ 0.39 fps)

4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.00' TW=0.00' (Dynamic Tailwater)
$L_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond SIS1: Stormtech

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.77' @ 12.13 hrs Surf.Area= 1,242 sf Storage= 10 cf
Plug-Flow detention time $=0.4 \mathrm{~min}$ calculated for 856 cf (100% of inflow)
Center-of-Mass det. time $=0.3 \mathrm{~min}(843.4-843.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	247.75'	1,151 cf	$\mathbf{2 0 . 5 0}{ }^{\prime} \mathrm{W} \times 60.58{ }^{\text {'L }} \times 3.50{ }^{\text {'H }}$ Field A
			4,346 cf Overall - 1,470 cf Embedded $=2,876$ cf $\times 40.0 \%$ Voids
\#2A	248.25'	1,470 cf	ADS_StormTech SC-740 +Cap 32 Inside \#1
			Effective Size $=44.6$ " $\mathrm{W} \times 30.0$ " $\mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W x 30.0"H $\times 7.56$ 'L with 0.44 ' Overlap
			32 Chambers in 4 Rows
\#3	248.00^{\prime}	35 cf	4.00'D x 2.75'H Vertical Cone/Cylinder-Impervious
		2,655 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	247.75'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=245.51{ }^{\prime} \quad$ Phase-In= 0.01 '
\#2	Secondary	250.60'	2.0" x 2.0" Horiz. Orifice/Grate X 7.00 columns
			X 7 rows C=0.600 in 24.0 " $\times 24.0$ " Grate (34% open area)
			Limited to weir flow at low heads

Discarded OutFlow Max=0.24 cfs @ 12.13 hrs HW=247.77' (Free Discharge)
—1=Exfiltration (Controls 0.24 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.75' TW=0.00' (Dynamic Tailwater)
—2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS1: Stormtech - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81 ' Cap Length $\times 2=58.58$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=60.58$ ' Base Length
4 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0$ " Side Stone $\times 2=20.50^{\prime}$ Base Width
6.0" Stone Base $+30.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.50^{\prime}$ Field Height

32 Chambers $\times 45.9$ cf $=1,470.1$ cf Chamber Storage
4,346.4 cf Field - 1,470.1 cf Chambers $=2,876.3$ cf Stone $\times 40.0 \%$ Voids $=1,150.5$ cf Stone Storage
Chamber Storage + Stone Storage $=2,620.6 \mathrm{cf}=0.060$ af
Overall Storage Efficiency $=60.3 \%$
Overall System Size $=60.58^{\prime} \times 20.50^{\prime} \times 3.50^{\prime}$
32 Chambers
161.0 cy Field
106.5 cy Stone

Summary for Pond SIS2:

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	249.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 247.00' Phase-In= 0.01'
\#2	Primary	253.50'	2.0" x 2.0" Horiz. Orifice/Grate X 6.00 columns
			X 6 rows C= 0.600 in 24.0 " $\times 24.0$ " Grate (25% open area)
			Limited to weir flow at low heads

Discarded OutFlow Max=0.35 cfs @ 12.19 hrs HW=249.10' (Free Discharge)
L-1=Exfiltration (Controls 0.35 cfs)
Primary OutFlow Max=0.00 cfs @ 2.00 hrs HW=249.00' TW=247.00' (Dynamic Tailwater)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS2: - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= 44.6 "W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

5 Chambers/Row x 7.12' Long +0.81' Cap Length x $2=37.22^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=39.22^{\prime}$ Base Length
9 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone $\times 2=44.25^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height +6.0 " Stone Cover $=3.50$ Field Height

45 Chambers $\times 45.9 \mathrm{cf}=2,067.3 \mathrm{cf}$ Chamber Storage
6,073.7 cf Field - 2,067.3 cf Chambers $=4,006.4$ cf Stone $\times 40.0 \%$ Voids $=1,602.6$ cf Stone Storage
Chamber Storage + Stone Storage $=3,669.9 \mathrm{cf}=0.084$ af
Overall Storage Efficiency $=60.4 \%$
Overall System Size $=39.22^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
45 Chambers
225.0 cy Field
148.4 cy Stone

Summary for Link AP1: To Wetlands

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP2: To Offsite

Inflow Area =	36,823 sf,	7.73\% Imperviou	Depth > 0.10" for 2-Inch event
Inflow	0.02 cfs @	12.42 hrs , Volume=	311 cf
Primary	0.02 cfs @	12.42 hrs , Volume=	311 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP3: Abutter Depression

Inflow Area $=$	$26,605 \mathrm{sf}$,	5.66% Impervious,	Inflow Depth $=0.00 "$	for 2 -Inch event
Inflow	$=$	$0.00 \mathrm{cfs} @$	2.00 hrs , Volume $=$	0 cf
Primary	$=$	$0.00 \mathrm{cfs} @$	2.00 hrs , Volume $=$	0 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Time span=2.00-24.00 hrs, dt=0.02 hrs, 1101 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: To Area Drain

SubcatchmentA2: To Exterior

Subcatchment A3: To Exterior

Subcatchment A4: To Roof Drain

Subcatchment A5: To Abutter

SubcatchmentA6: To Abutter

Subcatchment A7: To Infiltration Basin

Subcatchment A8: To Exterior

SubcatchmentR1: To CB\#1

SubcatchmentR2: To CB-2

SubcatchmentR3: To RGB

SubcatchmentR4: To CB-4

Subcatchment R5: To Foxhole

Subcatchment R6: To CB-6

SubcatchmentR7: To CB-5

Subcatchment R8: To RGB 2

Runoff Area $=2,664 \mathrm{sf} \quad 0.00 \%$ Impervious Runoff Depth >0.47 "
Tc $=6.0 \mathrm{~min} \quad \mathrm{CN}=61$ Runoff $=0.02 \mathrm{cfs} 105 \mathrm{cf}$
Runoff Area $=1,761$ sf 0.00% Impervious Runoff Depth $>0.47^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.01 \mathrm{cfs} 69 \mathrm{cf}$

Runoff Area=3,301 sf 50.05% Impervious Runoff Depth >1.45 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=0.13 \mathrm{cfs} 400 \mathrm{cf}$

Runoff Area $=2,082$ sf 100.00% Impervious Runoff Depth >3.03 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.15 \mathrm{cfs} 526 \mathrm{cf}$

Runoff Area $=26,605$ sf 5.66% Impervious Runoff Depth $>0.55^{\prime \prime}$ Flow Length=212' Tc=11.8 min CN=63 Runoff=0.23 cfs $1,217 \mathrm{cf}$

Runoff Area $=36,823$ sf 7.73% Impervious Runoff Depth $>0.55^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=63$ Runoff $=0.40 \mathrm{cfs} 1,688 \mathrm{cf}$

Runoff Area $=18,226$ sf 0.00% Impervious Runoff Depth $>0.47^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.15 \mathrm{cfs} 717 \mathrm{cf}$

Runoff Area $=30,601$ sf 1.56% Impervious Runoff Depth >0.44 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=60$ Runoff $=0.22 \mathrm{cfs} 1,109 \mathrm{cf}$

Runoff Area=11,152 sf 70.59% Impervious Runoff Depth >1.97 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=0.59 \mathrm{cfs} 1,835 \mathrm{cf}$

Runoff Area=22,269 sf 62.49\% Impervious Runoff Depth>1.74" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=1.04 cfs $3,227 \mathrm{cf}$

Runoff Area $=10,217$ sf 71.15% Impervious Runoff Depth >1.97 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=0.54 \mathrm{cfs} 1,681 \mathrm{cf}$

Runoff Area $=14,887$ sf 66.43% Impervious Runoff Depth >1.89 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=86$ Runoff $=0.76 \mathrm{cfs} 2,350 \mathrm{cf}$

Runoff Area=33,967 sf 52.12% Impervious Runoff Depth >1.45 " Flow Length=327' Tc=10.1 min CN=80 Runoff=1.14 cfs $4,112 \mathrm{cf}$

Runoff Area=26,016 sf 47.47% Impervious Runoff Depth >1.38 " Flow Length=248' Tc=16.0 min CN=79 Runoff=0.71 cfs 3,001 cf

Runoff Area $=31,901$ sf 39.74% Impervious Runoff Depth >1.20 " Flow Length=303' Tc=11.9 min CN=76 Runoff=0.82 cfs $3,184 \mathrm{cf}$

Runoff Area=17,230 sf 63.94\% Impervious Runoff Depth>1.82" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=0.84 \mathrm{cfs} 2,607 \mathrm{cf}$

Subcatchment R9: To RGB 1

SubcatchmentS3: To Swale

SubcatchmentS4: To Swale

SubcatchmentS8: To Swale

Reach SW3:

Reach SW8:

Pond AD:

Pond CB1: CB\#1

Pond CB2:

Pond CB4:

Pond CB5:

Pond CB6:

Pond CB7:

Pond DMH1:

Pond DMH3:

Pond DMH4:

Pond DMH5:

Pond DMH6:

Runoff Area $=7,051$ sf 91.07% Impervious Runoff Depth $>2.71^{\prime \prime}$
Tc $=6.0 \mathrm{~min} \quad \mathrm{CN}=95$ Runoff $=0.49 \mathrm{cfs} 1,593 \mathrm{cf}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=95$ Runoff $=0.49 \mathrm{cfs} 1,593 \mathrm{cf}$

Runoff Area $=10,077$ sf 25.91% Impervious Runoff Depth $>0.92^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=71$ Runoff $=0.23 \mathrm{cfs} 772 \mathrm{cf}$

Runoff Area $=1,346$ sf 29.12% Impervious Runoff Depth >0.97 " Tc=6.0 min CN=72 Runoff=0.03 cfs 109 cf

Runoff Area=5,239 sf 34.13% Impervious Runoff Depth >1.08 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=74$ Runoff $=0.15 \mathrm{cfs} 473 \mathrm{cf}$

Avg. Flow Depth=0.24' Max Vel=1.14 fps Inflow=0.77 cfs 2,453 cf $\mathrm{n}=0.041 \mathrm{~L}=501.0$ ' $\mathrm{S}=0.0100$ '/' Capacity $=28.59 \mathrm{cfs}$ Outflow=0.60 cfs $2,436 \mathrm{cf}$

Avg. Flow Depth=0.48' Max Vel=0.29 fps Inflow=0.63 cfs $2,066 \mathrm{cf}$ $\mathrm{n}=0.240 \mathrm{~L}=232.0$ ' $\mathrm{S}=0.0102$ '/' Capacity=4.93 cfs Outflow=$=0.41 \mathrm{cfs} 2,045 \mathrm{cf}$

Peak Elev=248.70' Inflow=0.02 cfs 105 cf 8.0" Round Culvert n=0.011 L=26.4' S=0.0049 '/' Outflow=0.02 cfs 105 cf

Peak Elev=249.42' Inflow=0.59 cfs $1,835 \mathrm{cf}$ 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=93.3^{\prime} \mathrm{S}=0.0050$ '/' Outflow=0.59 cfs $1,835 \mathrm{cf}$

Peak Elev=251.73' Inflow=1.04 cfs 3,227 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=73.9$ ' $\mathrm{S}=0.0100$ '/' Outflow=1.04 cfs $3,227 \mathrm{cf}$

Peak Elev=248.27' Inflow=0.76 cfs 2,350 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=14.5$ ' $\mathrm{S}=0.0193$ '//' Outflow=0.76 cfs $2,350 \mathrm{cf}$

Peak Elev=250.82' Inflow=0.82 cfs 3,184 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=8.5^{\prime} \mathrm{S}=0.0118$ '// Outflow=0.82 cfs $3,184 \mathrm{cf}$

Peak Elev=248.81' Inflow=0.71 cfs 3,001 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=6.3^{\prime} \mathrm{S}=0.0063$ '//' Outflow=0.71 cfs $3,001 \mathrm{cf}$

Peak Elev=248.38' Inflow=0.63 cfs 2,545 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=88.3$ ' $\mathrm{S}=0.0057$ '//' Outflow= $=0.63 \mathrm{cfs} 2,545 \mathrm{cf}$

Peak Elev=248.61' Inflow=0.61 cfs $1,940 \mathrm{cf}$ Outflow=0.61 cfs 1,940 cf

Peak Elev=247.83' Inflow=0.63 cfs 2,545 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=68.2^{\prime} \mathrm{S}=0.0051$ '//' Outflow=$=0.63 \mathrm{cfs} 2,545 \mathrm{cf}$

Peak Elev=247.37' Inflow=1.31 cfs $4,895 \mathrm{cf}$ 24.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=34.6^{\prime} \mathrm{S}=0.0049$ '//' Outflow=1.32 cfs $4,894 \mathrm{cf}$

Peak Elev=252.17' Inflow=1.17 cfs 4,652 cf 15.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=116.8^{\prime} \mathrm{S}=0.0102$ '/' Outflow=1.17 cfs $4,652 \mathrm{cf}$

Peak Elev=250.34' Inflow=1.89 cfs 7,836 cf 18.0" Round Culvert n=0.011 L=160.8' $\mathrm{S}=0.0100$ '/' Outflow=1.89 cfs 7,836 cf

Pond DMH7:		$\begin{aligned} & \text { Inflow=2.48 cfs } \\ & \text { Outflow }=2.48 \text { cfs } \\ & \\ & 10,837 \mathrm{cf} \\ & \text { Of } \end{aligned}$
Pond EX: Existing Abutter D	Depression Peak Elev=250.21' Storage $=263$ cf Discarded=0.08 cfs $1,215 \mathrm{cf}$ Primary= 0.00 cfs 0 cf	$\begin{aligned} & \text { cf Inflow }=0.23 \mathrm{cfs} \quad 1,217 \mathrm{cf} \\ & \text { Outflow }=0.08 \mathrm{cfs} \\ & 1,215 \mathrm{cf} \end{aligned}$
Pond HW2:	Peak Elev=253.52' 15.0" Round Culvert n=0.013 L=14.6' S=0.0856 '/'	$\begin{aligned} & \text { 2' Inflow=1.17 cfs } 4,652 \mathrm{cf} \\ & \text { Outflow=1.17 cfs } 4,652 \mathrm{cf} \end{aligned}$
Pond IB1: Infiltration Basin \# Discarded=2.02 cfs 19,852 cf	\#1 Peak Elev=247.35' Storage=3,113 cf cf Primary $=0.30 \mathrm{cfs} 704 \mathrm{cf}$ Secondary= 0.00 cfs 0 cf	$\begin{aligned} & \text { Inflow=5.02 cfs } 20,561 \mathrm{cf} \\ & \text { Outflow }=2.32 \mathrm{cfs} \quad 20,556 \mathrm{cf} \end{aligned}$
Pond SIS1: Stormtech	Peak Elev=248.15' Storage=200 cf Discarded $=0.28$ cfs 1,940 cf Secondary $=0.00$ cfs 0 cf	$\begin{aligned} & \text { ff Inflow }=0.61 \mathrm{cfs} \quad 1,940 \mathrm{cf} \\ & \text { Outflow }=0.28 \mathrm{cfs} \quad 1,940 \mathrm{cf} \end{aligned}$
Pond SIS2:	Peak Elev=249.65' Storage=562 cf Discarded $=0.44$ cfs $3,753 \mathrm{cf}$ Primary $=0.00 \mathrm{cfs} 0 \mathrm{cf}$	$\begin{aligned} & \text { of } \begin{array}{l} \text { Inflow }=1.19 \mathrm{cfs} \\ \text { Outflow }=0.44 \mathrm{cfs} \\ 3,753 \mathrm{cf} \end{array} \end{aligned}$
Link AP1: To Wetlands		$\begin{aligned} & \text { Inflow }=0.48 \text { cfs } \quad 2,283 \mathrm{cf} \\ & \text { Primary }=0.48 \text { cfs } 2,283 \mathrm{cf} \end{aligned}$
Link AP2: To Offsite		$\begin{aligned} & \text { Inflow }=0.40 \text { cfs } \quad 1,688 \mathrm{cf} \\ & \text { Primary }=0.40 \text { cfs } \quad 1,688 \mathrm{cf} \end{aligned}$
Link AP3: Abutter Depression	ion	$\begin{aligned} & \text { Inflow }=0.00 \mathrm{cfs} \\ & \text { Primary } 00.00 \mathrm{cf} \\ & \text { cfs } \end{aligned}$

Summary for Subcatchment A1: To Area Drain

Runoff $=\quad 0.02$ cfs @ 12.12 hrs, Volume= 105 cf , Depth> $0.47{ }^{\prime \prime}$
Routed to Pond AD :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN Description			
	2,664	61	75\% Gras	cover, Go	od, HSG B
2,664		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A2: To Exterior

Runoff $=\quad 0.01$ cfs @ 12.12 hrs, Volume= 69 cf , Depth> 0.47"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN Description			
	1,761	61	>75\% Gras	cover, Go	od, HSG B
1,761		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment A3: To Exterior

Runoff $=\quad 0.13$ cfs @ 12.09 hrs, Volume= 400 cf , Depth> 1.45"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 1,649 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,652 | 98 | Roofs, HSG B |

Summary for Subcatchment A4: To Roof Drain

Runoff $=\quad 0.15$ cfs @ 12.08 hrs, Volume= 526 cf, Depth> 3.03"
Routed to Pond SIS2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	rea (sf)	CN Description			
	2,082	98	oofs, HS		
2,082		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A5: To Abutter

Runoff $=\quad 0.23$ cfs @ 12.20 hrs, Volume= $\quad 1,217 \mathrm{cf}$, Depth> 0.55"

Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 23,897 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,201 | 55 | Woods, Good, HSG B |
| 1,507 | 98 | Roofs, HSG B |

Summary for Subcatchment A6: To Abutter

Runoff $=\quad 0.40 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 1,688 \mathrm{cf}$, Depth> 0.55"

Routed to Link AP2 : To Offsite
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description		
	1,281	98 P	Paved parking, HSG B		
	25,992	$61>$	>75\% Grass cover, Good, HSG B		
	7,984	55	Woods, Good, HSG B		
	1,566	98 R	Roofs, HSG B		
	36,823	63 W	Weighted Average		
	33,976		92.27\% Pervious Area		
	2,847		7.73\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A7: To Infiltration Basin

Runoff $=\quad 0.15$ cfs @ 12.12 hrs, Volume= 717 cf, Depth> $0.47{ }^{\prime \prime}$
Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

Summary for Subcatchment A8: To Exterior

Runoff $=\quad 0.22$ cfs @ 12.13 hrs, Volume= $1,109 \mathrm{cf}$, Depth> 0.44"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description		
	476	98 P	Paved parking, HSG B		
	20,641	$61>$	>75\% Grass cover, Good, HSG B		
	9,484	55	Woods, Good, HSG B		
	30,601	60 V	Weighted Average		
	30,125		98.44\% Pervious Area		
	476		1.56\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R1: To CB\#1

Runoff $=\quad 0.59 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 1,835 \mathrm{cf}$, Depth> 1.97"
Routed to Pond CB1: CB\#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN	Description		
	$\begin{aligned} & 7,872 \\ & 3,280 \\ & \hline \end{aligned}$	$\begin{array}{ll} 98 \\ 61 \end{array}$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	$\begin{array}{r} 11,152 \\ 3,280 \\ 7,872 \end{array}$	87	Weighted Average 29.41\% Pervious Area 70.59\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R2: To CB-2

Runoff $=\quad 1.04$ cfs @ 12.09 hrs, Volume= $3,227 \mathrm{cf}$, Depth> 1.74"

Routed to Pond CB2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description		
	8,993	98 P			
	8,353	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	4,923	98 R			
	22,269	84	Weighted Average		
	8,353		37.51\% Pervious Area		
	13,916		62.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R3: To RGB

Runoff $=\quad 0.54$ cfs @ 12.09 hrs, Volume $=1,681 \mathrm{cf}$, Depth> 1.97"

Routed to Reach SW3:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description Paved parking, HSG B		
	5,386	98 P			
	2,948	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	1,883	98 R			
	10,217	87 W	Weighted Average		
	2,948		28.85\% Pervious Area		
	7,269		71.15\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R4: To CB-4

Runoff $=\quad 0.76$ cfs @ 12.09 hrs, Volume= $2,350 \mathrm{cf}$, Depth> 1.89"

Routed to Pond CB4 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description		
	7,280	98 P	Paved parking, HSG B		
	4,998	$61>$	>75\% Grass cover, Good, HSG B		
	2,609	98 R	Roofs, HSG B		
	14,887	86	Weighted Average		
	4,998		33.57\% Pervious Area		
	9,889		66.43\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R5: To Foxhole

Runoff $=1.14$ cfs @ 12.15 hrs, Volume=
Routed to Pond IB1 : Infiltration Basin \#1
4,112 cf, Depth> $1.45{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs
Type III 24-hr 2-yr Rainfall=3.27"

Summary for Subcatchment R6: To CB-6

Runoff $=\quad 0.71$ cfs @ 12.23 hrs, Volume= $3,001 \mathrm{cf}$, Depth> 1.38"

Routed to Pond CB6 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

Summary for Subcatchment R7: To CB-5

Runoff $=\quad 0.82$ cfs @ 12.17 hrs, Volume $=\quad 3,184$ cf, Depth> 1.20"

Routed to Pond CB5 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

Summary for Subcatchment R8: To RGB 2

Runoff $=\quad 0.84$ cfs @ 12.09 hrs, Volume= 2,607 cf, Depth> 1.82"
Routed to Pond HW2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description Paved parking, HSG B		
	6,729	98 P			
	6,213	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	4,288	98 R			
	17,230	85	Weighted Average		
	6,213		36.06\% Pervious Area		
	11,017		63.94\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R9: To RGB 1

Runoff $=\quad 0.49$ cfs @ 12.08 hrs, Volume $=1,593 \mathrm{cf}$, Depth> 2.71"
Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description Paved parking, HSG B		
	4,963	98 P			
	630	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	1,458	98 R			
	7,051	95 V	Weighted Average		
	630		8.93\% Pervious Area		
	6,421		91.07\% Impervious Area		
Tc (\min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment S3: To Swale

Runoff $=\quad 0.23$ cfs @ 12.10 hrs, Volume= 772 cf , Depth> 0.92"
Routed to Reach SW3:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description		
	2,611	98 P	Paved parking, HSG B		
	7,466	$61>$	>75\% Grass	s cover, Go	od, HSG B
	10,077	71 V	Weighted Average		
	7,466		74.09\% Pervious Area		
	2,611		25.91\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S4: To Swale

Runoff $=\quad 0.03$ cfs @ 12.10 hrs, Volume= 109 cf , Depth> 0.97"

Routed to Pond CB7 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

	Area (sf)	CN D	Description		
	392	98 P	Paved parking, HSG B		
	954	$61>$	>75\% Grass cover, Good, HSG B		
	1,346	72	Weighted Average		
	954		70.88\% Pervious Area		
	392		29.12\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S8: To Swale

Runoff $=\quad 0.15$ cfs @ 12.10 hrs , Volume= 473 cf , Depth> 1.08"

Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-yr Rainfall=3.27"

Area (sf)	CN	Description
1,788	98	Paved parking, HSG B
3,451	61	>75\% Grass cover, Good, HSG B
5,239	74	Weighted Average
3,451		65.87\% Pervious Area
1,788		34.13% Impervious Area
Tc	Length	Slope
Velocity	Capacity	Description
(min)	(feet)	(ft/ft)
(ft/sec)	(cfs)	
6.0		Direct Entry,

Summary for Reach SW3:

Inflow Area = 20,294 sf, 48.68\% Impervious, Inflow Depth > 1.45" for 2-yr event
Inflow $=0.77$ cfs @ 12.09 hrs , Volume $=\quad 2,453 \mathrm{cf}$
Outflow = $0.60 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume $=\quad 2,436 \mathrm{cf}$, Atten= 22%, Lag= 4.0 min
Routed to Pond CB7 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity= 1.14 fps , Min. Travel Time= 7.3 min
Avg. Velocity $=0.40 \mathrm{fps}$, Avg. Travel Time $=21.1 \mathrm{~min}$
Peak Storage= 264 cf @ 12.16 hrs
Average Depth at Peak Storage= 0.24^{\prime}, Surface Width= 2.93'
Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 28.59 cfs
1.50 ' x 1.50' deep channel, $\mathrm{n}=0.041$ Riprap, 2-inch

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=501.0' Slope= 0.0100 '/'
Inlet Invert= 256.12', Outlet Invert= 251.10'

Summary for Reach SW8:

Inflow Area $=\quad 12,290$ sf, 66.79% Impervious, Inflow Depth > 2.02" for 2-yr event
Inflow $=0.63 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $2,066 \mathrm{cf}$
Outflow $=\quad 0.41 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume $=\quad 2,045 \mathrm{cf}$, Atten= 36%, Lag $=5.8 \mathrm{~min}$
Routed to Pond HW2 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity $=0.29 \mathrm{fps}$, Min. Travel Time= 13.5 min
Avg. Velocity $=0.10 \mathrm{fps}$, Avg. Travel Time $=37.0 \mathrm{~min}$
Peak Storage= 328 cf @ 12.18 hrs
Average Depth at Peak Storage=0.48' , Surface Width= 4.38'
Bank-Full Depth $=1.50$ ' Flow Area= 9.0 sf, Capacity $=4.93$ cfs
1.50 ' x 1.50 ' deep channel, $n=0.240$ Sheet flow over Dense Grass

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length $=232.0^{\prime}$ Slope $=0.0102$ '/'
Inlet Invert= 255.37', Outlet Invert= 253.00'

Summary for Pond AD:

Inflow Area $=$	$2,664 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth $>0.47 "$	for 2 -yr event
Inflow	$=$	$0.02 \mathrm{cfs} @$	12.12 hrs , Volume=	105 cf
Outflow	$=$	$0.02 \mathrm{cfs} @$	12.12 hrs , Volume=	105 cf , Atten= $=0 \%$, Lag= 0.0 min
Primary	$=$	$0.02 \mathrm{cfs} @$	12.12 hrs , Volume $=$	105 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.70' @ 12.11 hrs
Flood Elev=250.75'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$248.60 '$	$8.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=26.4^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= 248.60' $/ 248.47 \prime \mathrm{~S}=0.0049 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.35 sf	

Primary OutFlow Max=0.02 cfs @ 12.12 hrs HW=248.70' TW=248.60' (Dynamic Tailwater)
_1=Culvert (Outlet Controls 0.02 cfs @ 0.99 fps)

Summary for Pond CB1: CB\#1

Inflow	52	vious	Inflow Depth > 1.97" for 2-yr event
Inflow	0.59 cfs @	12.09 hrs , Volume=	1,835 cf
Outflow	0.59 cfs @	12.09 hrs , Volume=	$1,835 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	0.59 cfs @	12.09 hrs , Volume=	1,835 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 249.42' @ 12.09 hrs
Flood Elev=251.50'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.00^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=93.3^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $249.00^{\prime} / 248.53^{\prime} \quad \mathrm{S}=0.0050 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.59 cfs @ 12.09 hrs HW=249.42' TW=248.61' (Dynamic Tailwater)
_1=Culvert (Barrel Controls 0.59 cfs @ 2.78 fps)

Summary for Pond CB2:

Inflow Area =	22,269	62.49\% Impervious,	w Depth > 1.74" for 2-yr event
Inflow	1.04 cfs @	12.09 hrs , Volume=	3,227 cf
Outflow	1.04 cfs @	12.09 hrs , Volume=	3,227 cf, Atten= 0\%, Lag= 0.0 min
Primary	1.04 cfs @	12.09 hrs , Volume=	3,227 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 251.73' @ 12.09 hrs
Flood Elev= 254.02'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	251.20^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=73.9^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 251.20 ' $/ 250.46$ ' $\mathrm{S}=0.0100 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=1.03 cfs @ 12.09 hrs HW=251.73' TW=249.39' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 1.03 cfs @ 2.47 fps)

Summary for Pond CB4:

 Routed to Pond DMH4 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.27' @ 12.09 hrs
Flood Elev=250.69'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	247.83^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=14.5^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $247.83^{\prime} / 247.55$ ' $\mathrm{S}=0.0193 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.75 cfs @ 12.09 hrs HW=248.27' TW=247.25' (Dynamic Tailwater)
—1 $^{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 0.75$ cfs @ 2.26 fps)

Summary for Pond CB5:

Inflow Area $=$	$31,901 \mathrm{sf}$,	39.74%	Impervious,	Inflow Depth $>$
Inflow	$=$	$0.82 \mathrm{cfs} @$	12.17 hrs , Volume=	for 2 -yr event
Outflow	$=$	$0.82 \mathrm{cfs} @$	12.17 hrs , Volume=	$3,184 \mathrm{cf}$
Primary	$=$	$0.82 \mathrm{cfs} @$	12.17 hrs , Volume=	$3,184 \mathrm{cf}$, Atten=

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 250.82' @ 12.17 hrs
Flood Elev=252.45'

Device	Routing	Invert	Outlet Devices
\#1	Primary	250.30'	12.0" Round Culvert
			$\mathrm{L}=8.5^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 250.30' 250.20 S 0.0118 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf

Primary OutFlow Max=0.82 cfs @ 12.17 hrs HW=250.82' TW=250.32' (Dynamic Tailwater)
①=Culvert (Barrel Controls 0.82 cfs @ 2.91 fps)

Summary for Pond CB6:

 Routed to Pond DMH7:

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.81' @ 12.23 hrs
Flood Elev= 250.82'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	248.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=6.3^{\prime}$ RCP, sq.cut end projecting, Ke=0.500	
		Inlet / Outlet Invert $248.30^{\prime} / 248.26^{\prime} \quad \mathrm{S}=0.0063 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf	

Primary OutFlow Max=0.70 cfs @ 12.23 hrs HW=248.81' TW=248.23' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.70 cfs @ 2.54 fps)

Summary for Pond CB7:

 Routed to Pond DMH3:

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.38' @ 12.15 hrs
Flood Elev=253.00'

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | ---: | :--- | :--- |
| $\# 1$ | Primary | 248.00^{\prime} | $18.0^{\prime \prime}$ Round Culvert |
| | | $L=88.3^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$ | |
| | | Inlet / Outlet Invert= 248.00 ' / 247.50' $\mathrm{S}=0.0057 \mathrm{Cc}=0.900$ | |
| | | $\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$ | |

Primary OutFlow Max=0.63 cfs @ 12.15 hrs HW=248.38' TW=247.83' (Dynamic Tailwater)
$\leftarrow_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 0.63$ cfs @ 2.71 fps)

Summary for Pond DMH1:

 Routed to Pond SIS1 : Stormtech

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.61' @ 12.09 hrs
Flood Elev=252.50'

Device	Routing	Invert	Outlet Devices		
\#1	Primary	248.40'	12.0" Round MANIFOLD		
			$\mathrm{L}=6.0^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.40' $/ 248.35{ }^{\text {c }}$ S=0.0083 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area $=0.79 \mathrm{sf}$		
\#2	Primary	248.28'	24.0" Round ISOLATOR		
			$\mathrm{L}=4.0^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.28' / 248.25' S=0.0075 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf		
Primary OutFlow Max=0.61 cfs @ 12.09 hrs HW=248.61' TW=247.95' (Dynamic Tailwater) -1=MANIFOLD (Barrel Controls 0.14 cfs @ 1.86 fps)					

Summary for Pond DMH3:

 Routed to Pond DMH4 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.83' @ 12.15 hrs
Flood Elev=251.98'

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :--- | :--- | :--- |
| $\# 1$ | Primary | 247.45^{\prime} | $18.0^{\prime \prime}$ Round Culvert |
| | | $L=68.2^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$ | |
| | | Inlet / Outlet Invert= $247.45^{\prime} / 247.10^{\prime} \quad \mathrm{S}=0.0051 \mathrm{I} / \mathrm{Cc}=0.900$ | |
| | | $\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 1.77 sf | |

Primary OutFlow Max=0.63 cfs @ 12.15 hrs HW=247.83' TW=247.29' (Dynamic Tailwater)
①=Culvert (Barrel Controls 0.63 cfs @ 2.67 fps)

Summary for Pond DMH4:

Inflow Area =	36,527	55.19\% Impervious,	w Depth > 1.61" for 2-yr event
Inflow	1.31 cfs @	12.11 hrs , Volume=	4,895 cf
Outflow	1.32 cfs @	12.11 hrs, Volume=	$4,894 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	1.32 cfs @	12.11 hrs , Volume=	4,894 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.37' @ 12.45 hrs
Flood Elev=251.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	246.60'	24.0" Round Culvert
			$\mathrm{L}=34.6$ ' RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 246.60' / 246.43' S=0.0049 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=1.31 cfs @ 12.11 hrs HW=247.27' TW=247.11' (Dynamic Tailwater)
——1=Culvert (Outlet Controls 1.31 cfs @ 2.13 fps)

Summary for Pond DMH5:

 Routed to Pond DMH6:

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=252.17' @ 12.10 hrs
Flood Elev=254.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	251.65^{\prime}	$15.0^{\prime \prime}$ Round Culvert
		$L=116.8^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $251.655^{\prime} / 250.46^{\prime} \quad \mathrm{S}=0.0102 \mathrm{Cl} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.23 \mathrm{sf}$	

Primary OutFlow Max=1.17 cfs @ 12.10 hrs HW=252.17' TW=250.33' (Dynamic Tailwater)

Summary for Pond DMH6:

Inflow Ar	,	pervious,	Inflow Depth > 1.53" for 2-yr event
Inflow	1.89 cfs @	12.13 hrs , Volume=	7,836 cf
Outflow	1.89 cfs @	12.13 hrs , Volume=	7,836 cf, Atten= 0\%, Lag= 0.0 min
Primary	1.89 cfs @	12.13 hrs , Volume=	7,836 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 250.34' @ 12.13 hrs
Flood Elev= 252.93'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.71^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=160.8^{\prime}$ RCP, sq.cut end projecting, Ke= 0.500	
		Inlet / Outlet Invert= $249.71^{\prime} / 248.10^{\prime} \quad \mathrm{S}=0.0100 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight $\&$ clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=1.89 cfs @ 12.13 hrs HW=250.34' TW=248.25' (Dynamic Tailwater)

Summary for Pond DMH7:

Inflow Area $=\quad 87,437$ sf, 50.61% Impervious, Inflow Depth > 1.49" for 2-yr event
Inflow $=2.48$ cfs @ 12.15 hrs , Volume $=10,837 \mathrm{cf}$
Outflow = $2.48 \mathrm{cfs} @ 12.15 \mathrm{hrs}$, Volume $=10,837 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=\quad 2.48$ cfs @ 12.15 hrs , Volume $=\quad 10,837 \mathrm{cf}$
Routed to Pond IB1 : Infiltration Basin \#1
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.26' @ 12.15 hrs
Flood Elev= 251.25'

Device	Routing	Invert	Outlet Devices
\#1	Primary	247.60'	24.0" Round Culvert
			$\mathrm{L}=111.5^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 247.60' / 246.65' S=0.0085 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area=3.14 sf

Primary OutFlow Max=2.47 cfs @ 12.15 hrs HW=248.26' TW=247.17' (Dynamic Tailwater)
①=Culvert (Inlet Controls 2.47 cfs @ 2.76 fps)

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	26,605 sf,	5.66\% Impervious,	Inflow Depth > 0.55" for 2-yr event
Inflow	0.23 cfs @	12.20 hrs , Volume=	1,217 cf
Outflow	0.08 cfs @	12.73 hrs , Volume=	$1,215 \mathrm{cf}$, Atten= 67\%, Lag= 31.3 min
Discarded =	0.08 cfs @	12.73 hrs , Volume=	1,215 cf
Primary	0.00 cfs @	2.00 hrs , Volume=	0 cf
Routed to	AP3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.21' @ 12.73 hrs Surf.Area= 1,289 sf Storage= 263 cf
Plug-Flow detention time $=36.6$ min calculated for 1,215 cf (100% of inflow)
Center-of-Mass det. time $=36.0 \mathrm{~min}$ (941.3-905.3)

Discarded OutFlow Max=0.08 cfs @ 12.73 hrs HW=250.21' (Free Discharge)
L1=Exfiltration (Controls 0.08 cfs)
Primary OutFlow Max=0.00 cfs @ 2.00 hrs HW=249.80' TW=0.00' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond HW2:

[62] Hint: Exceeded Reach SW8 OUTLET depth by 0.10 ' @ 12.06 hrs
Inflow Area = 29,520 sf, 65.13\% Impervious, Inflow Depth > 1.89" for 2-yr event
Inflow = 1.17 cfs @ 12.10 hrs , Volume= $4,652 \mathrm{cf}$
Outflow = 1.17 cfs @ 12.10 hrs , Volume $=4,652 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary = 1.17 cfs @ 12.10 hrs , Volume= $4,652 \mathrm{cf}$
Routed to Pond DMH5 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=253.52' @ 12.10 hrs
Flood Elev=254.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	253.00'	15.0" Round Culvert
			$\mathrm{L}=14.6$ ' RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 253.00' / 251.75' S=0.0856 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.17 cfs @ 12.10 hrs HW=253.52' TW=252.17' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls 1.17 cfs @ 2.45 fps)

Summary for Pond IB1: Infiltration Basin \#1

[80] Warning: Exceeded Pond DMH4 by 0.31 ' @ 2.00 hrs (0.76 cfs 2,021 cf)

Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 247.35 ' @ 12.48 hrs Surf.Area= 9,063 sf Storage= 3,113 cf
Plug-Flow detention time $=7.7$ min calculated for 20,537 cf (100% of inflow)
Center-of-Mass det. time $=7.6 \mathrm{~min}$ (849.6-842.0)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	247.00^{\prime}	32,758 cf	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
247.00	8,532	373.0	0	0	8,532
248.00	10,075	398.2	9,293	9,293	10,126
249.00	11,718	423.3	10,886	20,179	11,817
250.00	13,461	448.4	12,579	32,758	13,612

Device	Routing	Invert	Outlet Devices
\#1	Discarded	247.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 244.93' Phase-In= 0.01'
\#2	Primary	247.00'	18.0" Round Culvert L=62.2' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=247.00' 246.00 ' $=0.0161$ '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area 1.77 sf
\#3	Device 2	247.00'	6.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 2	248.20'	2.0" x 2.0" Horiz. Orifice/Grate X 8.00 columns
			X 8 rows C= 0.600 in 24.0 " x 24.0" Grate (44% open area)
			Limited to weir flow at low heads
\#5	Secondary	249.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=2.02 cfs @ 12.48 hrs HW=247.35' (Free Discharge)
L- $_{1=E x f i l t r a t i o n ~(C o n t r o l s ~}^{2.02 ~ c f s) ~}$
Primary OutFlow Max=0.30 cfs @ 12.48 hrs HW=247.35' TW=0.00' (Dynamic Tailwater)
$\psi_{2}=$ Culvert (Passes 0.30 cfs of 0.64 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 0.30 cfs @ 2.03 fps)

4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.00' TW=0.00' (Dynamic Tailwater)
$4_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \text { cfs) }}$

Summary for Pond SIS1: Stormtech

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.15' @ 12.29 hrs Surf.Area= 1,242 sf Storage= 200 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=3.2 \mathrm{~min}(825.6-822.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	247.75'	1,151 cf	$\mathbf{2 0 . 5 0}{ }^{\prime} \mathrm{W} \times \mathbf{6 0 . 5 8}$ 'L x 3.50'H Field A
			4,346 cf Overall - 1,470 cf Embedded $=2,876$ cf $\times 40.0 \%$ Voids
\#2A	248.25'	1,470 cf	ADS_StormTech SC-740 +Cap x 32 Inside \#1
			Effective Size $=44.6 \mathrm{~W} \mathrm{~W} \times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
\#3	248.00^{\prime}	35 cf	4.00'D x 2.75 'H Vertical Cone/Cylinder-Impervious
		2,655 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	247.75'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 245.51' Phase-In= 0.01'
\#2	Secondary	250.60'	2.0" x 2.0" Horiz. Orifice/Grate X 7.00 columns
			$\times 7$ rows C= 0.600 in 24.0 " $\times 24.0$ " Grate (34% open area)
			Limited to weir flow at low heads

Discarded OutFlow Max=0.28 cfs @ 12.29 hrs HW=248.15' (Free Discharge)
—1=Exfiltration (Controls 0.28 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.75' TW=0.00' (Dynamic Tailwater)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS1: Stormtech - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81 ' Cap Length $\times 2=58.58$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=60.58$ ' Base Length
4 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0$ " Side Stone $\times 2=20.50^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.50$ Field Height

32 Chambers $\times 45.9$ cf $=1,470.1$ cf Chamber Storage
4,346.4 cf Field - 1,470.1 cf Chambers $=2,876.3$ cf Stone $\times 40.0 \%$ Voids $=1,150.5$ cf Stone Storage
Chamber Storage + Stone Storage $=2,620.6 \mathrm{cf}=0.060$ af
Overall Storage Efficiency = 60.3\%
Overall System Size $=60.58^{\prime} \times 20.50^{\prime} \times 3.50^{\prime}$
32 Chambers
161.0 cy Field
106.5 cy Stone

Summary for Pond SIS2:

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	249.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=247.00{ }^{\prime} \quad$ Phase-In= $0.01{ }^{1}$
\#2	Primary	253.50'	2.0" x 2.0" Horiz. Orifice/Grate X 6.00 columns
			X 6 rows $\mathrm{C}=0.600$ in 24.0 " $\times 24.0$ ' Grate (25% open area)
			Limited to weir flow at low heads

Discarded OutFlow Max=0.44 cfs @ 12.37 hrs HW=249.65' (Free Discharge)
L-1=Exfiltration (Controls 0.44 cfs)
Primary OutFlow Max=0.00 cfs @ 2.00 hrs HW=249.00' TW=247.00' (Dynamic Tailwater)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS2: - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= 44.6 "W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

5 Chambers/Row x 7.12' Long +0.81' Cap Length x $2=37.22^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=39.22^{\prime}$ Base Length
9 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone $\times 2=44.25^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height +6.0 " Stone Cover $=3.50$ Field Height

45 Chambers $\times 45.9 \mathrm{cf}=2,067.3 \mathrm{cf}$ Chamber Storage
6,073.7 cf Field - 2,067.3 cf Chambers $=4,006.4$ cf Stone $\times 40.0 \%$ Voids $=1,602.6$ cf Stone Storage
Chamber Storage + Stone Storage $=3,669.9 \mathrm{cf}=0.084$ af
Overall Storage Efficiency $=60.4 \%$
Overall System Size $=39.22^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
45 Chambers
225.0 cy Field
148.4 cy Stone

Summary for Link AP1: To Wetlands

Inflow Area $=$	$236,171 \mathrm{sf}, 42.45 \%$ Impervious,	Inflow Depth > $0.12 "$	for 2 -yr event	
Inflow	$=$	$0.48 \mathrm{cfs} @$	12.37 hrs , Volume	$2,283 \mathrm{cf}$
Primary	$=$	$0.48 \mathrm{cfs} @$	12.37 hrs , Volume $=$	$2,283 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP2: To Offsite

Inflow Area $=$	$36,823 \mathrm{sf}$,	7.73% Impervious,	Inflow Depth $>00.55 "$	for 2 -yr event
Inflow	$=$	$0.40 \mathrm{cfs} @$	12.11 hrs , Volume	$1,688 \mathrm{cf}$
Primary	$=$	$0.40 \mathrm{cfs} @$	12.11 hrs , Volume $=$	$1,688 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP3: Abutter Depression

Inflow Area $=$	$26,605 \mathrm{sf}$,	5.66% Impervious,	Inflow Depth $=0.00 "$	for 2 -yr event
Inflow	$=$	$0.00 \mathrm{cfs} @$	2.00 hrs, Volume $=$	0 cf
Primary	$=$	$0.00 \mathrm{cfs} @$	2.00 hrs , Volume $=$	0 cf , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Time span $=2.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.02 \mathrm{hrs}, 1101$ points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: To Area Drain

SubcatchmentA2: To Exterior

SubcatchmentA3: To Exterior

Subcatchment A4: To Roof Drain

SubcatchmentA5: To Abutter

SubcatchmentA6: To Abutter

Subcatchment A7: To Infiltration Basin

Subcatchment A8: To Exterior

SubcatchmentR1: To CB\#1

Subcatchment R2: To CB-2

Subcatchment R3: To RGB

SubcatchmentR4: To CB-4

Subcatchment R5: To Foxhole

Subcatchment R6: To CB-6

SubcatchmentR7: To CB-5

Subcatchment R8: To RGB 2

Runoff Area $=2,664$ sf 0.00% Impervious Runoff Depth $>1.32^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.09 \mathrm{cfs} 293 \mathrm{cf}$

Runoff Area $=1,761$ sf 0.00% Impervious Runoff Depth >1.32 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=0.06 cfs 194 cf

Runoff Area=3,301 sf 50.05% Impervious Runoff Depth >2.82 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=0.25 \mathrm{cfs} 776 \mathrm{cf}$

Runoff Area=2,082 sf 100.00% Impervious Runoff Depth >4.67 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.23 \mathrm{cfs} 810 \mathrm{cf}$

Runoff Area=26,605 sf 5.66% Impervious Runoff Depth $>1.45^{\prime \prime}$ Flow Length=212' Tc=11.8 min CN=63 Runoff=0.79 cfs $3,223 \mathrm{cf}$

Runoff Area $=36,823$ sf 7.73% Impervious Runoff Depth $>1.46^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=63$ Runoff=1.34 cfs $4,469 \mathrm{cf}$

Runoff Area $=18,226$ sf 0.00% Impervious Runoff Depth $>1.32^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.59 \mathrm{cfs} 2,004 \mathrm{cf}$

Runoff Area $=30,601$ sf 1.56% Impervious Runoff Depth $>1.25^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=60$ Runoff $=0.92 \mathrm{cfs} 3,194 \mathrm{cf}$

Runoff Area=11,152 sf 70.59% Impervious Runoff Depth >3.49 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff=$=1.03 \mathrm{cfs} 3,242 \mathrm{cf}$

Runoff Area=22,269 sf 62.49\% Impervious Runoff Depth>3.19" Tc=6.0 min CN=84 Runoff=1.90 cfs $5,928 \mathrm{cf}$

Runoff Area $=10,217$ sf 71.15% Impervious Runoff Depth >3.49 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=0.94 \mathrm{cfs} 2,970 \mathrm{cf}$

Runoff Area $=14,887$ sf 66.43% Impervious Runoff Depth >3.39 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=86$ Runoff=1.34 cfs $4,205 \mathrm{cf}$

Runoff Area=33,967 sf 52.12% Impervious Runoff Depth >2.82 " Flow Length=327' Tc=10.1 min CN=80 Runoff=2.25 cfs 7,976 cf

Runoff Area $=26,016$ sf 47.47% Impervious Runoff Depth $>2.72^{\prime \prime}$ Flow Length=248' Tc=16.0 min CN=79 Runoff=1.41 cfs $5,906 \mathrm{cf}$

Runoff Area=31,901 sf 39.74% Impervious Runoff Depth >2.46 " Flow Length=303' Tc=11.9 min CN=76 Runoff=1.74 cfs $6,550 \mathrm{cf}$

Runoff Area=17,230 sf 63.94\% Impervious Runoff Depth>3.29" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff=1.51 cfs $4,725 \mathrm{cf}$

Subcatchment R9: To RGB 1

SubcatchmentS3: To Swale

SubcatchmentS4: To Swale

SubcatchmentS8: To Swale

Reach SW3:

Reach SW8:

Pond AD:

Pond CB1: CB\#1

Pond CB2:

Pond CB4:

Pond CB5:

Pond CB6:

Pond CB7:

Pond DMH1:

Pond DMH3:

Pond DMH4:

Pond DMH5:

Pond DMH6:

Runoff Area=7,051 sf 91.07\% Impervious Runoff Depth>4.34" Tc=6.0 min CN=95 Runoff=0.76 cfs 2,548 cf

Runoff Area=10,077 sf 25.91\% Impervious Runoff Depth>2.05" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=71$ Runoff=0.55 cfs $1,725 \mathrm{cf}$

Runoff Area=1,346 sf 29.12\% Impervious Runoff Depth >2.13 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=72$ Runoff= 0.08 cfs 239 cf

Runoff Area=5,239 sf 34.13% Impervious Runoff Depth>2.30" Tc=6.0 min CN=74 Runoff=0.32 cfs 1,003 cf

Avg. Flow Depth=0.35' Max Vel=1.39 fps Inflow=1.49 cfs 4,695 cf $\mathrm{n}=0.041 \mathrm{~L}=501.0^{\prime} \mathrm{S}=0.0100$ '/' Capacity=28.59 cfs Outflow=1.23 cfs 4,670 cf

Avg. Flow Depth=0.64' Max Vel=0.34 fps Inflow=1.08 cfs 3,551 cf $\mathrm{n}=0.240 \mathrm{~L}=232.0^{\prime} \mathrm{S}=0.0102$ '/' Capacity=4.93 cfs Outflow=0.74 cfs 3,524 cf

Peak Elev=248.81' Inflow=0.09 cfs 293 cf 8.0" Round Culvert $n=0.011$ L=26.4' $S=0.0049$ '/' Outflow=0.09 cfs 293 cf

Peak Elev=249.57' Inflow=1.03 cfs 3,242 cf
12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=93.3^{\prime} \mathrm{S}=0.0050$ '/' Outflow=1.03 cfs 3,242 cf

Peak Elev=251.96' Inflow=1.90 cfs 5,928 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=73.9^{\prime} \mathrm{S}=0.0100$ '/' Outflow=1.90 cfs $5,928 \mathrm{cf}$

Peak Elev=248.44' Inflow=1.34 cfs 4,205 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=14.5$ ' $\mathrm{S}=0.0193$ '/' Outflow=1.34 cfs $4,205 \mathrm{cf}$

Peak Elev=251.12' Inflow=1.74 cfs 6,550 cf 12.0" Round Culvert $\mathrm{n}=0.011$ L=8.5' $\mathrm{S}=0.0118$ '/' Outflow=1.74 cfs $6,550 \mathrm{cf}$

Peak Elev=249.07' Inflow=1.41 cfs 5,906 cf 12.0" Round Culvert n=0.011 L=6.3' S=0.0063 '//' Outflow=1.41 cfs 5,906 cf

Peak Elev=248.57' Inflow=1.29 cfs 4,909 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=88.3$ ' $\mathrm{S}=0.0057$ '/' Outflow=1.29 cfs $4,909 \mathrm{cf}$

Peak Elev=248.72' Inflow=1.11 cfs 3,535 cf Outflow=1.11 cfs 3,535 cf

Peak Elev=248.05' Inflow=1.29 cfs 4,909 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=68.2$ ' $\mathrm{S}=0.0051$ '/' Outflow=1.29 cfs $4,909 \mathrm{cf}$

Peak Elev=247.99' Inflow=2.52 cfs 9,114 cf 24.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=34.6^{\prime} \mathrm{S}=0.0049$ '/' Outflow=2.52 cfs 9,114 cf

Peak Elev=252.37' Inflow=2.13 cfs 8,249 cf 15.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=116.8$ ' $\mathrm{S}=0.0102$ '/' Outflow=2.13 cfs $8,249 \mathrm{cf}$

Peak Elev=250.63' Inflow=3.69 cfs 14,799 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=160.8^{\prime} \mathrm{S}=0.0100$ '/' Outflow=3.69 cfs 14,799 cf

Pond DMH7:	Peak Elev=248.57'	Inflow $=4.88 \mathrm{cfs} 20,705 \mathrm{cf}$
	24.0" Round Culvert n=0.011 L=111.5' S=0.0085 '/'	Outflow=4.88 cfs 20,705 cf
Pond EX: Existing Abutter Depression Peak Elev=250.30' Storage=407		$\begin{aligned} & \text { cf Inflow }=0.79 \mathrm{cfs} \quad 3,223 \mathrm{cf} \\ & \text { Outflow }=0.75 \mathrm{cfs} 3,204 \mathrm{cf} \end{aligned}$
Pond HW2:	Peak Elev=253.72	' Inflow=2.13 cfs 8,249 cf
	15.0" Round Culvert n=0.013 L=14.6' S=0.0856 '/'	Outflow=2.13 cfs 8,249 cf
Pond IB1: Infiltration Basin \#1Discarded=2.75 cfs 35,901 cf Primen	\#1 Peak Elev=247.98' Storage=9,094 cf	Inflow=10.09 cfs 39,799 cf
	Primary=0.81 cfs 3,890 cf Secondary=0.00 cfs 0 cf	Outflow=3.56 cfs 39,791 cf
Pond SIS1: Stormtech Di	Peak Elev=248.67' Storage=681 c	cf Inflow=1.11 cfs 3,535 cf
	Discarded=0.34 cfs 3,535 cf Secondary=0.00 cfs 0 cf	Outflow=0.34 cfs 3,535 cf
Pond SIS2:	Peak Elev=250.38' Storage=1,561 c	cf Inflow=2.13 cfs 6,738 cf
	Discarded=0.56 cfs 6,737 cf Primary=0.00 cfs 0 cf	Outflow=0.56 cfs 6,737 cf
Link AP1: To Wetlands		Inflow=1.61 cfs 8,054 cf
		Primary=1.61 cfs 8,054 cf
Link AP2: To Offsite		Inflow=1.34 cfs 4,469 cf
		Primary=1.34 cfs 4,469 cf
Link AP3: Abutter Depression		Inflow=0.64 cfs 934 cf
		Primary=0.64 cfs 934 cf

Total Runoff Area $=313,415$ sf Runoff Volume $=61,979$ cf Average Runoff Depth $=2.37$ " 64.11% Pervious $=200,945$ sf 35.89% Impervious $=112,470$ sf

Summary for Subcatchment A1: To Area Drain

Runoff $=\quad 0.09$ cfs @ 12.10 hrs, Volume= 293 cf , Depth> 1.32" Routed to Pond AD :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN Description			
	2,664	61	75\% Gras	cover, Go	od, HSG B
2,664		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A2: To Exterior

Runoff $=\quad 0.06$ cfs @ 12.10 hrs, Volume= 194 cf, Depth> 1.32"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN Description			
	1,761	61	>75\% Gras	cover, Go	od, HSG B
1,761		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment A3: To Exterior

Runoff $=\quad 0.25$ cfs @ 12.09 hrs, Volume= 776 cf, Depth> 2.82"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 1,649 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,652 | 98 | Roofs, HSG B |

Summary for Subcatchment A4: To Roof Drain

Runoff $=\quad 0.23$ cfs @ 12.08 hrs, Volume= 810 cf , Depth> 4.67"

Routed to Pond SIS2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN Description			
	2,082	98 Roofs, HSG B			
	2,082	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment A5: To Abutter
Runoff $=\quad 0.79$ cfs @ 12.18 hrs, Volume= $3,223 \mathrm{cf}$, Depth> $1.45{ }^{\prime \prime}$
Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs
Type III 24-hr 10-yr Rainfall=4.92"

Summary for Subcatchment A6: To Abutter
Runoff $=\quad 1.34$ cfs @ 12.10 hrs, Volume= $4,469 \mathrm{cf}$, Depth> 1.46"
Routed to Link AP2 : To Offsite
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Description		
	1,281	98 P	Paved parking, HSG B		
	25,992	61 >	>75\% Grass cover, Good, HSG B		
	7,984	55	Woods, Good, HSG B		
	1,566	98 R	Roofs, HSG B		
	36,823	63 V	Weighted Average		
	33,976		92.27\% Pervious Area		
	2,847		7.73\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment A7: To Infiltration Basin

Runoff $=\quad 0.59$ cfs @ 12.10 hrs, Volume= $\quad 2,004 \mathrm{cf}$, Depth> 1.32"
Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN Description			
	18,226	61	>75\% Gras	s cover, God	od, HSG B
18,226		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{tt})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A8: To Exterior

Runoff $=\quad 0.92$ cfs @ 12.10 hrs, Volume= $\quad 3,194 \mathrm{cf}$, Depth> 1.25"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Description		
	476	98 P	Paved parking, HSG B		
	20,641	$61>$	>75\% Grass cover, Good, HSG B		
	9,484	55	Woods, Good, HSG B		
	30,601	60 V	Weighted Average		
	30,125		98.44\% Pervious Area		
	476		1.56\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R1: To CB\#1

Runoff $=\quad 1.03 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 3,242 \mathrm{cf}$, Depth> 3.49"
Routed to Pond CB1:CB\#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

Area (sf)	CN	Description
7,872	98	Paved parking, HSG B
3,280	61	>75\% Grass cover, Good, HSG B
11,152	87	Weighted Average
3,280		29.41\% Pervious Area
7,872		70.59% Impervious Area
Tc	Length	Slope
Velocity	Capacity	Description
(min)	(feet)	(ft/ft)
6.0	(ft/sec)	(cfs)

Summary for Subcatchment R2: To CB-2

Runoff $=\quad 1.90$ cfs @ 12.09 hrs, Volume= $5,928 \mathrm{cf}$, Depth> 3.19"
Routed to Pond CB2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Description		
	8,993	98			
	8,353	61 >	>75\% Grass cover, Good, HSG B		
	4,923	98 R	Roofs, HSG B		
	22,269	84	Weighted Average		
	8,353		37.51\% Pervious Area		
	13,916		62.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R3: To RGB

Runoff $=\quad 0.94$ cfs @ 12.09 hrs, Volume= 2,970 cf, Depth> 3.49"
Routed to Reach SW3:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Description Paved parking, HSG B		
	5,386	98 P			
	2,948	61 >	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	1,883	98 R	Roofs, HSG B		
	10,217	87 W	Weighted Average		
	2,948		28.85\% Pervious Area		
	7,269		71.15\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R4: To CB-4

Runoff $=\quad 1.34$ cfs @ 12.09 hrs, Volume= 4,205 cf, Depth> 3.39"

Routed to Pond CB4 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN	Description		
	7,280	98			
	4,998	61	>75\% Grass cover, Good, HSG B		
	2,609	98	Roofs, HSG B		
	14,887	86	Weighted Average		
	4,998		33.57\% Pervious Area		
	9,889		66.43\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{gathered} \text { Length } \\ \text { (feet) } \\ \hline \end{gathered}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R5: To Foxhole

Runoff $=\quad 2.25$ cfs @ 12.14 hrs, Volume= $\quad 7,976 \mathrm{cf}$, Depth> 2.82"
Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

Summary for Subcatchment R6: To CB-6

Runoff $=\quad 1.41$ cfs @ 12.22 hrs, Volume= 5,906 cf, Depth> 2.72"

Routed to Pond CB6 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

Summary for Subcatchment R7: To CB-5

Runoff $=\quad 1.74$ cfs @ 12.17 hrs, Volume= $6,550 \mathrm{cf}$, Depth> 2.46"

Routed to Pond CB5 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

Summary for Subcatchment R8: To RGB 2
Runoff $=\quad 1.51$ cfs @ 12.09 hrs, Volume= 4,725 cf, Depth> 3.29"
Routed to Pond HW2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Pescription parking, HSG B		
	6,729	98			
	6,213	$61>$	>75\% Grass cover, Good, HSG B		
	4,288	98 R	Roofs, HSG B		
	17,230	85	Weighted Average		
	6,213		36.06\% Pervious Area		
	11,017		63.94\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R9: To RGB 1

Runoff $=\quad 0.76$ cfs @ 12.08 hrs, Volume= $\quad 2,548 \mathrm{cf}$, Depth> 4.34"
Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Paved parking, HSG B		
	4,963	98 P			
	630	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	1,458	98 R	Roofs, HSG B		
	7,051	95 V	Weighted Average		
	630		8.93\% Pervious Area		
	6,421		91.07\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S3: To Swale

Runoff $=\quad 0.55$ cfs @ 12.09 hrs, Volume= $1,725 \mathrm{cf}$, Depth> 2.05"
Routed to Reach SW3 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Description Paved parking, HSG B		
	2,611	98 P			
	7,466	$61>$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	10,077	71	Weighted Average		
	7,466		74.09\% Pervious Area		
	2,611		25.91\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment S4: To Swale

Runoff $=\quad 0.08$ cfs @ 12.09 hrs, Volume= 239 cf , Depth> 2.13"

Routed to Pond CB7 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

	Area (sf)	CN D	Description		
	392	98 P	Paved parking, HSG B		
	954	$61>$	>75\% Grass cover, Good, HSG B		
	1,346	72	Weighted Average		
	954		70.88\% Pervious Area		
	392		29.12\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S8: To Swale

Runoff $=\quad 0.32 \mathrm{cfs} @ 12.09$ hrs, Volume $=1,003 \mathrm{cf}$, Depth> 2.30"

Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-yr Rainfall=4.92"

Area (sf)	CN	Description
1,788	98	Paved parking, HSG B
3,451	61	>75\% Grass cover, Good, HSG B
5,239	74	Weighted Average
3,451		65.87\% Pervious Area
1,788		34.13% Impervious Area
Tc	Length	Slope
Velocity	Capacity	Description
(min)	(feet)	(ft/ft)
(ft/sec)	(cfs)	
6.0		Direct Entry,

Summary for Reach SW3:

Inflow Area = $\quad 20,294$ sf, 48.68% Impervious, Inflow Depth > 2.78" for 10-yr event
Inflow $=1.49 \mathrm{cfs}$ @ 12.09 hrs , Volume= $\quad 4,695 \mathrm{cf}$
Outflow = $1.23 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=\quad 4,670 \mathrm{cf}$, Atten= 18%, Lag= 3.4 min
Routed to Pond CB7 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity= 1.39 fps , Min. Travel Time $=6.0 \mathrm{~min}$
Avg. Velocity $=0.47 \mathrm{fps}$, Avg. Travel Time= 17.9 min
Peak Storage= 441 cf @ 12.14 hrs
Average Depth at Peak Storage= 0.35^{\prime}, Surface Width= 3.58'
Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 28.59 cfs
1.50 x 1.50' deep channel, n= 0.041 Riprap, 2-inch

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=501.0' Slope= 0.0100 '/'
Inlet Invert= 256.12', Outlet Invert= 251.10'

Summary for Reach SW8:

Inflow Area = $\quad 12,290$ sf, 66.79% Impervious, Inflow Depth > 3.47" for 10-yr event
Inflow $=1.08 \mathrm{cfs}$ @ 12.09 hrs , Volume= $3,551 \mathrm{cf}$
Outflow = $0.74 \mathrm{cfs} @ 12.17 \mathrm{hrs}$, Volume $=3,524 \mathrm{cf}$, Atten= 32%, Lag $=5.1 \mathrm{~min}$
Routed to Pond HW2 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity $=0.34 \mathrm{fps}$, Min. Travel Time= 11.5 min
Avg. Velocity $=0.12 \mathrm{fps}$, Avg. Travel Time $=31.7 \mathrm{~min}$
Peak Storage= 508 cf @ 12.17 hrs
Average Depth at Peak Storage=0.64' , Surface Width= 5.34'
Bank-Full Depth $=1.50$ ' Flow Area= 9.0 sf, Capacity $=4.93$ cfs
1.50 ' x 1.50 ' deep channel, $n=0.240$ Sheet flow over Dense Grass

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=232.0' Slope=0.0102 '/'
Inlet Invert= 255.37', Outlet Invert= 253.00'

Summary for Pond AD:

Inflow	2,664 sf,	0.00\% Impervious,	Inflow Depth > 1.32" for 10-yr event
Inflow	0.09 cfs @	12.10 hrs , Volume=	293 cf
Outflow	0.09 cfs @	12.10 hrs , Volume=	293 cf, Atten= 0\%, Lag= 0.0 min
Primary	0.09 cfs @	12.10 hrs , Volume=	293 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.81' @ 12.09 hrs
Flood Elev=250.75'

Device	Routing	Invert	Outlet Devices
\#1	Primary	248.60'	8.0" Round Culvert
	Prar		$\mathrm{L}=26.4{ }^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 248.60' / 248.47' S=0.0049 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.35 sf

Primary OutFlow Max=0.09 cfs @ 12.10 hrs HW=248.81' TW=248.72' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 0.09 cfs @ 1.32 fps)

Summary for Pond CB1: CB\#1

Inflow Area =	52	pervious	Wepth	3.49" for 10-yr event
Inflow	1.03 cfs @	12.09 hrs , Volume=	3,242 cf	
Outflow	1.03 cfs @	12.09 hrs , Volume=	3,242 cf	f, Atten= 0\%, Lag= 0.0 min
Primary	1.03 cfs @	12.09 hrs , Volume=	3,242 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.57' @ 12.09 hrs
Flood Elev=251.50'

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :--- | :--- | :--- |
| $\# 1$ | Primary | $249.00 '$ | $12.0^{\prime \prime}$ Round Culvert |
| | | $L=93.3^{\prime}$ RCP, sq.cut end projecting, Ke=0.500 | |
| | | Inlet $/$ Outlet Invert= $249.00^{\prime} / 248.53^{\prime} \quad \mathrm{S}=0.0050 \mathrm{Cc}=0.900$ | |
| | | $\mathrm{n}=0.011$ Concrete pipe, straight $\&$ clean, Flow Area= $=0.79 \mathrm{sf}$ | |

Primary OutFlow Max=1.02 cfs @ 12.09 hrs HW=249.57' TW=248.72' (Dynamic Tailwater)
——1=Culvert (Barrel Controls 1.02 cfs @ 3.18 fps)

Summary for Pond CB2:

Inflow Area =	22,269 sf,	62.49\% Impervious,	Depth >	19" for 10-yr event
Inflow	1.90 cfs @	12.09 hrs , Volume=	5,928 cf	
Outflow	1.90 cfs @	12.09 hrs , Volume=	5,928 cf,	, Atten= 0\%, Lag= 0.0 min
Primary	1.90 cfs @	12.09 hrs , Volume=	5,928 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=251.96' @ 12.09 hrs
Flood Elev= 254.02'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	251.20^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=73.9^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $251.20 ' / 250.46$ ' $\mathrm{S}=0.0100 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf	

Primary OutFlow Max=1.89 cfs @ 12.09 hrs HW=251.96' TW=249.82' (Dynamic Tailwater)

Summary for Pond CB4:

Inflow	14,887 sf,	pervious	Inflow Depth > 3.39" for 10-yr event
Inflow	1.34 cfs @	12.09 hrs , Volume=	4,205 cf
Outflow	1.34 cfs @	12.09 hrs , Volume=	$4,205 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	1.34 cfs @	12.09 hrs , Volume=	4,205 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 248.44' @ 12.09 hrs
Flood Elev=250.69'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	247.83^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=14.5^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $247.83^{\prime} / 247.55$ ' $\mathrm{S}=0.0193 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=1.33 cfs @ 12.09 hrs HW=248.44' TW=247.54' (Dynamic Tailwater)
—1 $_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 1.33$ cfs @ 2.66 fps)

Summary for Pond CB5:

Inflow Ar	31,901 sf, 39.74\% Impervious,	Inflow Depth > 2.46" for 10-yr event
Inflow	1.74 cfs @ 12.17 hrs, Volume=	6,550 cf
Outflow	1.74 cfs @ 12.17 hrs, Volume=	6,550 cf, Atten= 0\%, Lag= 0.0 min
Primary	1.74 cfs @ 12.17 hrs, Volume=	6,550 cf

Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=251.12' @ 12.17 hrs
Flood Elev=252.45'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	250.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=8.5^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $250.30^{\prime} / 250.20^{\prime} \quad \mathrm{S}=0.0118 \mathrm{Cl} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=1.73 cfs @ 12.17 hrs HW=251.12' TW=250.60' (Dynamic Tailwater)
①=Culvert (Barrel Controls 1.73 cfs @ 3.43 fps)

Summary for Pond CB6:

 Routed to Pond DMH7:

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.07' @ 12.22 hrs
Flood Elev= 250.82'

Device	Routing	Invert	Outlet Devices
\#1	Primary	248.30'	12.0" Round Culvert
			$\mathrm{L}=6.3^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 248.30' 248.26 ' S=0.0063 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.41 cfs @ 12.22 hrs HW=249.07' TW=248.57' (Dynamic Tailwater)
①=Culvert (Barrel Controls 1.41 cfs @ 3.03 fps)

Summary for Pond CB7:

Inflow Area =	21,640 sf,	perviou	Depth > 2.72" for 10-yr event
Inflow	1.29 cfs @	12.14 hrs , Volume=	4,909 cf
Outflow	1.29 cfs @	12.14 hrs , Volume=	$4,909 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	1.29 cfs @	12.14 hrs , Volume=	4,909 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.57' @ 12.15 hrs
Flood Elev=253.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	248.00^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=88.3^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $248.00^{\prime} / 247.50^{\prime} \quad \mathrm{S}=0.0057 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=1.27 cfs @ 12.14 hrs HW=248.57' TW=248.04' (Dynamic Tailwater)
①=Culvert (Outlet Controls 1.27 cfs @ 3.09 fps)

Summary for Pond DMH1:

Inflow	13,816	56.98\% Impervious,	Inflow Depth	3.07 " for 10-yr event
Inflow	1.11 cfs @	12.09 hrs , Volume=	3,535 cf	
Outflow	1.11 cfs @	12.09 hrs , Volume=	3,535 cf,	, Atten= 0\%, Lag= 0.0 min
Primary	1.11 cfs @	12.09 hrs , Volume=	3,535 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.72' @ 12.09 hrs
Flood Elev=252.50'

Device	Routing	Invert	Outlet Devices		
\#1	Primary	248.40'	12.0" Round MANIFOLD		
			$\mathrm{L}=6.0^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.40' $/ 248.35{ }^{\text {c }}$ S=0.0083 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area $=0.79 \mathrm{sf}$		
\#2	Primary	248.28'	24.0" Round ISOLATOR		
			$\mathrm{L}=4.0^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.28' / 248.25' S=0.0075 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf		
Primary OutFlow Max=1.11 cfs @ 12.09 hrs HW=248.72' TW=248.33' (Dynamic Tailwater) -1=MANIFOLD (Barrel Controls 0.31 cfs @ 2.19 fps) -2=ISOLATOR (Barrel Controls 0.79 cfs @ 2.37 fps)					

Summary for Pond DMH3:

Inflow Area =	21,640	perviou	Depth > 2.72" for 10-yr event
Inflow	1.29 cfs @	12.14 hrs , Volume=	4,909 cf
Outflow	1.29 cfs @	12.14 hrs , Volume=	$4,909 \mathrm{cf}$, Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary	1.29 cfs @	12.14 hrs , Volume=	4,909 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.05' @ 12.42 hrs
Flood Elev=251.98'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	247.455^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=68.2^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 247.45 ' / 247.10' $\mathrm{S}=0.0051 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=1.29 cfs @ 12.14 hrs HW=248.04' TW=247.64' (Dynamic Tailwater)
_1=Culvert (Outlet Controls 1.29 cfs @ 2.93 fps)

Summary for Pond DMH4:

Inflow Area $=\quad 36,527$ sf, 55.19% Impervious, Inflow Depth > 2.99" for 10-yr event
Inflow $=2.52$ cfs @ 12.11 hrs, Volume= $9,114 \mathrm{cf}$
Outflow $=\quad 2.52$ cfs @ 12.11 hrs , Volume $=\quad 9,114 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=\quad 2.52$ cfs @ 12.11 hrs, Volume $=\quad 9,114$ cf
Routed to Pond IB1 : Infiltration Basin \#1
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=247.99' @ 12.52 hrs
Flood Elev=251.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	246.60^{\prime}	$\mathbf{2 4 . 0 " \text { Round Culvert }}$
		$L=34.6^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $246.60^{\prime} / 246.43^{\prime} \quad \mathrm{S}=0.0049 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=3.14 \mathrm{sf}$	

Primary OutFlow Max=2.51 cfs @ 12.11 hrs HW=247.59' TW=247.42' (Dynamic Tailwater)
$\leftarrow_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{2.51}$ cfs @ 2.38 fps)

Summary for Pond DMH5:

Inflow Area =	29,520 sf,	3\% Impervious,	Inflow Depth > 3.35" for 10-yr event
Inflow	2.13 cfs @	12.10 hrs , Volume=	8,249 cf
Outflow	2.13 cfs @	12.10 hrs , Volume=	$8,249 \mathrm{cf}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary	2.13 cfs @	12.10 hrs , Volume=	8,249 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=252.37' @ 12.10 hrs
Flood Elev=254.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	251.65^{\prime}	$15.0^{\prime \prime}$ Round Culvert
		$L=116.8^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $251.655^{\prime} / 250.46^{\prime} \quad \mathrm{S}=0.0102 \mathrm{Cl} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.23 \mathrm{sf}$	

Primary OutFlow Max=2.13 cfs @ 12.10 hrs HW=252.37' TW=250.61' (Dynamic Tailwater)
—1 $^{\text {=Culvert }}$ (Inlet Controls 2.13 cfs @ 2.89 fps)

Summary for Pond DMH6:

Inflow Area =	21 sf,	51.94\% Impervious,	w Depth > 2.89" for 10-yr event
Inflow	3.69 cfs @	12.13 hrs , Volume=	14,799 cf
Outflow	3.69 cfs @	12.13 hrs , Volume=	$14,799 \mathrm{cf}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary	3.69 cfs @	12.13 hrs , Volume=	14,799 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.63' @ 12.13 hrs
Flood Elev= 252.93'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.71^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=160.8^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $249.71^{\prime} / 248.10^{\prime} \quad \mathrm{S}=0.0100 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight $\&$ clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=3.68 cfs @ 12.13 hrs HW=250.62' TW=248.54' (Dynamic Tailwater)
①=Culvert (Inlet Controls 3.68 cfs @ 3.26 fps)

Summary for Pond DMH7:

Inflow Area $=\quad 87,437$ sf, 50.61% Impervious, Inflow Depth >2.84 " for 10-yr event
Inflow $=4.88 \mathrm{cfs} @ 12.15 \mathrm{hrs}$, Volume= $20,705 \mathrm{cf}$

Outflow = 4.88 cfs @ 12.15 hrs , Volume $=\quad 20,705 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min Primary = 4.88 cfs @ 12.15 hrs, Volume $=\quad 20,705 \mathrm{cf}$ Routed to Pond IB1 : Infiltration Basin \#1

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.57' @ 12.19 hrs
Flood Elev=251.25'

Device	Routing	Invert	Outlet Devices
\#1	Primary	247.60'	24.0" Round Culvert
			$\mathrm{L}=111.5^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 247.60' / 246.65' S=0.0085 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=4.87 cfs @ 12.15 hrs HW=248.56' TW=247.54' (Dynamic Tailwater)
①=Culvert (Outlet Controls 4.87 cfs @ 4.80 fps)

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	26,605 sf,	5.66\% Impervious,	Inflow Depth > 1.45" for 10-yr event
Inflow	0.79 cfs @	12.18 hrs , Volume=	3,223 cf
Outflow	0.75 cfs @	12.23 hrs , Volume=	$3,204 \mathrm{cf}$, Atten $=6 \%$, Lag $=3.0 \mathrm{~min}$
Discarded =	0.10 cfs @	12.23 hrs , Volume=	2,270 cf
Primary	0.64 cfs @	12.23 hrs , Volume=	934 cf
Routed to	AP3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.30' @ 12.23 hrs Surf.Area= 1,713 sf Storage $=407$ cf
Plug-Flow detention time $=34.9 \mathrm{~min}$ calculated for 3,202 cf (99% of inflow)
Center-of-Mass det. time= 31.6 min (902.7-871.1)

Discarded OutFlow Max=0.10 cfs @ 12.23 hrs HW=250.30' (Free Discharge)
L1=Exfiltration (Controls 0.10 cfs)
Primary OutFlow Max=0.64 cfs @ 12.23 hrs HW=250.30' TW=0.00' (Dynamic Tailwater)
$廿_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~} 0.64$ cfs @ 0.61 fps)

Summary for Pond HW2:

[62] Hint: Exceeded Reach SW8 OUTLET depth by 0.15 ' @ 12.06 hrs

Inflow Area	29,520	65.13\% Impervious,	Depth >	35 " for 10-yr event
Inflow	2.13 cfs @	12.10 hrs , Volume=	8,249 cf	
Outflow	2.13 cfs @	12.10 hrs , Volume=	8,249 cf,	Atten= 0\%, Lag= 0.0 min
Primary	2.13 cfs @	12.10 hrs , Volume=	8,249 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=253.72' @ 12.10 hrs
Flood Elev=254.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	253.00^{\prime}	$15.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=14.6^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert $=253.00^{\prime} / 251.75 \prime \mathrm{~S}=0.0856 \mathrm{Cl} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf	

Primary OutFlow Max=2.13 cfs @ 12.10 hrs HW=253.72' TW=252.37' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls 2.13 cfs @ 2.89 fps)

Summary for Pond IB1: Infiltration Basin \#1

[80] Warning: Exceeded Pond DMH4 by 0.31 ' @ 2.00 hrs (0.76 cfs 1,415 cf)

Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 247.98 ' @ 12.53 hrs Surf.Area= $10,043 \mathrm{sf}$ Storage= $9,094 \mathrm{cf}$
Plug-Flow detention time $=18.0$ min calculated for $39,755 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=17.8 \mathrm{~min}(842.4-824.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	247.00^{\prime}	32,758 cf	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
247.00	8,532	373.0	0	0	8,532
248.00	10,075	398.2	9,293	9,293	10,126
249.00	11,718	423.3	10,886	20,179	11,817
250.00	13,461	448.4	12,579	32,758	13,612

Device	Routing	Invert	Outlet Devices
\#1	Discarded	247.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 244.93' Phase-In= 0.01'
\#2	Primary	247.00'	18.0" Round Culvert L=62.2' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=247.00' 246.00 ' $=0.0161$ '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area 1.77 sf
\#3	Device 2	247.00'	6.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 2	248.20'	2.0" x 2.0" Horiz. Orifice/Grate X 8.00 columns
			X 8 rows C= 0.600 in 24.0 " x 24.0" Grate (44% open area)
			Limited to weir flow at low heads
\#5	Secondary	249.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=2.75 cfs @ 12.53 hrs HW=247.98' (Free Discharge)
—1=Exfiltration (Controls 2.75 cfs)
Primary OutFlow Max=0.81 cfs @ 12.53 hrs HW=247.98' TW=0.00' (Dynamic Tailwater)
$\psi_{2}=$ Culvert (Passes 0.81 cfs of 4.12 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 0.81 cfs @ 4.11 fps)

4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.00' TW=0.00' (Dynamic Tailwater)
$L_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond SIS1: Stormtech

Inflow Area =	13,816 sf,	8\% Impervious,	Inflow Depth >	3.07" for 10-yr event
Inflow	1.11 cfs @	12.09 hrs , Volume=	3,535 cf	
Outflow	0.34 cfs @	12.42 hrs , Volume=	3,535 cf,	Atten= 70\%, Lag= 20.2 min
Discarded =	0.34 cfs @	12.42 hrs , Volume=	3,535 cf	
Secondary =	0.00 cfs @	2.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.67' @ 12.42 hrs Surf.Area= 1,242 sf Storage= 681 cf
Plug-Flow detention time $=10.9 \mathrm{~min}$ calculated for $3,535 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=10.9 \mathrm{~min}(818.0-807.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	247.75'	1,151 cf	$\mathbf{2 0 . 5 0}{ }^{\prime} \mathrm{W} \times 60.58{ }^{\text {'L }} \times 3.50{ }^{\prime} \mathrm{H}$ Field
			4,346 cf Overall - 1,470 cf Embedded $=2,876$ cf $\times 40.0 \%$ Voids
\#2A	248.25'	1,470 cf	ADS_StormTech SC-740 +Cap $\times 32$ Inside \#1
			Effective Size $=44.6 \mathrm{~W} \mathrm{~W} \times 30.0 \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W $\times 30.0$ "H $\times 7.56$ 'L with 0.44 ' Overlap
			32 Chambers in 4 Rows
\#3	248.00^{\prime}	35 cf	4.00'D x 2.75'H Vertical Cone/Cylinder-Impervious
2,655 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	$247.75{ }^{\prime} 8.270$ in/hr Exfiltration over Surface area	
		247.75' 8.270	ductivity to Groundwater Elevation $=245.51{ }^{\prime} \quad$ Phase-In= $0.01{ }^{\prime}$
\#2	Secondary	250.60' $\begin{array}{ll}\text { 2.0 } \\ & \times 7 \\ & \text { Lim }\end{array}$	x 2.0" Horiz. Orifice/Grate X 7.00 columns
			rows C= 0.600 in 24.0 " x 24.0" Grate (34% open area)
			ed to weir flow at low heads

Discarded OutFlow Max=0.34 cfs @ 12.42 hrs HW=248.67' (Free Discharge)
-1=Exfiltration (Controls 0.34 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.75' TW=0.00' (Dynamic Tailwater)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS1: Stormtech - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81 ' Cap Length $\times 2=58.58$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=60.58$ ' Base Length
4 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0$ " Side Stone $\times 2=20.50^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.50$ Field Height

32 Chambers $\times 45.9$ cf $=1,470.1$ cf Chamber Storage
4,346.4 cf Field - 1,470.1 cf Chambers $=2,876.3$ cf Stone $\times 40.0 \%$ Voids $=1,150.5$ cf Stone Storage
Chamber Storage + Stone Storage $=2,620.6 \mathrm{cf}=0.060$ af
Overall Storage Efficiency = 60.3\%
Overall System Size $=60.58^{\prime} \times 20.50^{\prime} \times 3.50^{\prime}$
32 Chambers
161.0 cy Field
106.5 cy Stone

Summary for Pond SIS2:

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	249.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary		Conductivity to Groundwater Elevation $=247.00{ }^{\prime} \quad$ Phase- $\mathrm{In}=0.01{ }^{\prime}$
		253.50'	2.0" x 2.0" Horiz. Orifice/Grate X 6.00 columns
			X 6 rows C=0.600 in 24.0 " x 24.0 " Grate (25% open area)
			Limited to weir flow at low heads

Discarded OutFlow Max=0.56 cfs @ 12.46 hrs HW=250.38' (Free Discharge)
—1=Exfiltration (Controls 0.56 cfs)
Primary OutFlow Max=0.00 cfs @ 2.00 hrs HW=249.00' TW=247.00' (Dynamic Tailwater)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS2: - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= 44.6 "W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{" ~ C-C ~ R o w ~ S p a c i n g ~}$

5 Chambers/Row x 7.12' Long +0.81' Cap Length x $2=37.22^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=39.22^{\prime}$ Base Length
9 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone $\times 2=44.25^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height +6.0 " Stone Cover $=3.50$ Field Height

45 Chambers $\times 45.9 \mathrm{cf}=2,067.3 \mathrm{cf}$ Chamber Storage
6,073.7 cf Field - 2,067.3 cf Chambers $=4,006.4$ cf Stone $\times 40.0 \%$ Voids $=1,602.6$ cf Stone Storage
Chamber Storage + Stone Storage $=3,669.9 \mathrm{cf}=0.084$ af
Overall Storage Efficiency $=60.4 \%$
Overall System Size $=39.22^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
45 Chambers
225.0 cy Field
148.4 cy Stone

Summary for Link AP1: To Wetlands

low	236,171 s, 42.45\% impervious,	0.41" for 10-yr event
Infl	1.61 cfs @ 12.12 hrs, Volume=	8,054 cf
Primary	1.61 cfs @ 12.12 hrs, Volume=	8,054 cf, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP2: To Offsite

Inflow Area $=$	$36,823 \mathrm{sf}$,	7.73% Impervious,	Inflow Depth > 1.46 " for 10 -yr event	
Inflow	$=$	$1.34 \mathrm{cfs} @$	12.10 hrs , Volume	$4,469 \mathrm{cf}$
Primary	$=$	$1.34 \mathrm{cfs} @$	12.10 hrs , Volume $=$	$4,469 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP3: Abutter Depression

Inflow Area =	26,605 sf,	5.66\% Impervious,	epth $=0.42$ " for 10-yr event
Inflo	0.64 cfs @	12.23 hrs , Volume=	934 cf
Primary	0.64 cfs @	12.23 hrs, Volume=	934 cf, Atten=0\%, Lag= 0.0 m

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Time span $=2.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.02 \mathrm{hrs}, 1101$ points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: To Area Drain

SubcatchmentA2: To Exterior

SubcatchmentA3: To Exterior

SubcatchmentA4: To Roof Drain

SubcatchmentA5: To Abutter

Subcatchment A6: To Abutter

Subcatchment A7: To Infiltration Basin

Subcatchment A8: To Exterior

SubcatchmentR1: To CB\#1

SubcatchmentR2: To CB-2

Subcatchment R3: To RGB

SubcatchmentR4: To CB-4

Subcatchment R5: To Foxhole

Subcatchment R6: To CB-6

SubcatchmentR7: To CB-5

Subcatchment R8: To RGB 2

Runoff Area $=2,664$ sf 0.00% Impervious Runoff Depth >3.01 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.21 \mathrm{cfs} 667 \mathrm{cf}$

Runoff Area $=1,761$ sf 0.00% Impervious Runoff Depth >3.01 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff=$=0.14 \mathrm{cfs} 441 \mathrm{cf}$

Runoff Area=3,301 sf 50.05% Impervious Runoff Depth >5.08 " Tc=6.0 min CN=80 Runoff=0.45 cfs $1,397 \mathrm{cf}$

Runoff Area $=2,082$ sf 100.00% Impervious Runoff Depth $>7.1^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.35 \mathrm{cfs} 1,239 \mathrm{cf}$

Runoff Area=26,605 sf 5.66% Impervious Runoff Depth >3.21 " Flow Length=212' Tc=11.8 min CN=63 Runoff=1.88 cfs $7,117 \mathrm{cf}$

Runoff Area $=36,823$ sf 7.73% Impervious Runoff Depth $>3.21^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=63$ Runoff=3.15 cfs $9,864 \mathrm{cf}$

Runoff Area $=18,226$ sf 0.00% Impervious Runoff Depth $>3.01^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=61$ Runoff $=1.45 \mathrm{cfs} 4,564 \mathrm{cf}$

Runoff Area=30,601 sf 1.56% Impervious Runoff Depth>2.90" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=60$ Runoff $=2.33 \mathrm{cfs} 7,398 \mathrm{cf}$

Runoff Area $=11,152$ sf 70.59% Impervious Runoff Depth >5.88 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff=1.69 cfs $5,465 \mathrm{cf}$

Runoff Area=22,269 sf 62.49\% Impervious Runoff Depth>5.53" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff $=3.23 \mathrm{cfs} 10,271 \mathrm{cf}$

Runoff Area $=10,217$ sf 71.15% Impervious Runoff Depth >5.88 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=1.55 \mathrm{cfs} 5,007 \mathrm{cf}$

Runoff Area $=14,887$ sf 66.43% Impervious Runoff Depth >5.77 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=86$ Runoff= $2.23 \mathrm{cfs} 7,152 \mathrm{cf}$

Runoff Area=33,967 sf 52.12% Impervious Runoff Depth >5.07 " Flow Length=327' Tc=10.1 $\mathrm{min} \quad \mathrm{CN}=80$ Runoff=4.00 cfs $14,365 \mathrm{cf}$

Runoff Area=26,016 sf 47.47% Impervious Runoff Depth>4.96" Flow Length=248' Tc=16.0 min CN=79 Runoff=2.55 cfs 10,745 cf

Runoff Area=31,901 sf 39.74% Impervious Runoff Depth >4.62 " Flow Length=303' Tc=11.9 min CN=76 Runoff=3.27 cfs $12,290 \mathrm{cf}$

Runoff Area=17,230 sf 63.94\% Impervious Runoff Depth>5.65" Tc=6.0 $\mathrm{min} \mathrm{CN}=85$ Runoff=2.54 cfs 8,112 cf

Subcatchment R9: To RGB 1

SubcatchmentS3: To Swale

SubcatchmentS4: To Swale

SubcatchmentS8: To Swale

Reach SW3:

Reach SW8:

Pond AD:

Pond CB1: CB\#1

Pond CB2:

Pond CB4:

Pond CB5:

Pond CB6:

Pond CB7:

Pond DMH1:

Pond DMH3:

Pond DMH4:

Pond DMH5:

Pond DMH6:

Runoff Area=7,051 sf 91.07\% Impervious Runoff Depth>6.82" Tc=6.0 $\mathrm{min} \mathrm{CN}=95$ Runoff $=1.16 \mathrm{cfs} 4,005 \mathrm{cf}$

Runoff Area $=10,077$ sf 25.91% Impervious Runoff Depth >4.08 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=71$ Runoff=$=1.11 \mathrm{cfs} 3,422 \mathrm{cf}$

Runoff Area=1,346 sf 29.12% Impervious Runoff Depth $>4.18^{\prime \prime}$ Tc=6.0 min CN=72 Runoff=0.15 cfs 469 cf

Runoff Area=5,239 sf 34.13% Impervious Runoff Depth $>4.41^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=74$ Runoff $=0.62 \mathrm{cfs} 1,923 \mathrm{cf}$

Avg. Flow Depth=0.47' Max Vel=1.65 fps Inflow=2.65 cfs 8,429 cf $\mathrm{n}=0.041 \mathrm{~L}=501.0$ ' $\mathrm{S}=0.0100$ '/' Capacity=28.59 cfs Outflow=2.26 cfs $8,395 \mathrm{cf}$

Avg. Flow Depth=0.83' Max Vel=0.39 fps Inflow=1.78 cfs $5,929 \mathrm{cf}$ $\mathrm{n}=0.240 \mathrm{~L}=232.0^{\prime} \quad \mathrm{S}=0.0102$ '/' Capacity=4.93 cfs Outflow=1.28 cfs $5,892 \mathrm{cf}$

Peak Elev=249.63' Inflow=0.21 cfs 667 cf 8.0" Round Culvert n=0.011 L=26.4' $\mathrm{S}=0.0049$ '/' Outflow=0.21 cfs 667 cf

Peak Elev=249.78' Inflow=1.69 cfs 5,465 cf
12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=93.3^{\prime} \mathrm{S}=0.0050$ '/' Outflow=1.69 cfs $5,465 \mathrm{cf}$

Peak Elev=252.43' Inflow=3.23 cfs 10,271 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=73.9$ ' $\mathrm{S}=0.0100$ '/' Outflow=3.23 cfs 10,271 cf

Peak Elev=248.68' Inflow=2.23 cfs 7,152 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=14.5$ ' $\mathrm{S}=0.0193$ '/' Outflow=2.23 cfs $7,152 \mathrm{cf}$

Peak Elev=251.77' Inflow=3.27 cfs 12,290 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=8.5^{\prime} \mathrm{S}=0.0118$ '/' Outflow=3.27 cfs $12,290 \mathrm{cf}$

Peak Elev=249.59' Inflow=2.55 cfs 10,745 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=6.3^{\prime} \mathrm{S}=0.0063 \mathrm{l} / \mathrm{\prime} \quad$ Outflow=2.55 cfs $10,745 \mathrm{cf}$

Peak Elev=248.89' Inflow=2.39 cfs 8,865 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=88.3$ ' $\mathrm{S}=0.0057$ '//' Outflow=2.39 cfs $8,865 \mathrm{cf}$

Peak Elev=249.63' Inflow=1.90 cfs 6,132 cf Outflow=1.90 cfs 6,132 cf

Peak Elev=248.66' Inflow=2.39 cfs 8,865 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=68.2^{\prime} \mathrm{S}=0.0051$ '//' Outflow=2.39 cfs $8,865 \mathrm{cf}$

Peak Elev=248.61' Inflow=4.47 cfs 16,017 cf 24.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=34.6^{\prime} \mathrm{S}=0.0049$ '/' Outflow=4.47 cfs $16,017 \mathrm{cf}$

Peak Elev=252.66' Inflow=3.63 cfs 14,004 cf 15.0" Round Culvert n=0.011 L=116.8' S=0.0102 '/' Outflow=3.63 cfs 14,004 cf

Peak Elev=251.06' Inflow=6.60 cfs 26,294 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=160.8^{\prime} \mathrm{S}=0.0100$ '/' Outflow=6.60 cfs $26,294 \mathrm{cf}$

Pond DMH7:	Peak Elev=249.14' Inflow=8.78 cfs 37,039 cf	
		Outflow=8.78 cfs 37,039 cf
Pond EX: Existing Abutter D	Depression Peak Elev=250.35' Storage=496 c Discarded $=0.12$ cfs 3,324 cf Primary $=1.73$ cfs $3,718 \mathrm{cf}$	cf Inflow=1.88 cfs 7,117 cf Outflow=1.85 cfs 7,042 cf
Pond HW2:		
Pond IB1: Infiltration Basin \#1 Peak Elev=248.60' Storage=15,583 cf Inflow=18.37 cfs 71,985 cf		
Discarded=3.52 cfs 56,110 cf Primary=6.48 cfs 15,862 cf Secondary=0.00 cfs 0 cf Outflow=10.00 cfs 71,973 cf		
Pond SIS1: Stormtech	Peak Elev=249.63' Storage $=1,588 \mathrm{c}$ Discarded $=0.44$ cfs 6,132 cf Secondary $=0.00$ cfs 0 cf	$\begin{aligned} & \text { cf Inflow=1.90 cfs } 6,132 \mathrm{cf} \\ & \text { Outflow }=0.44 \mathrm{cfs} 6,132 \mathrm{cf} \end{aligned}$
Pond SIS2:	Peak Elev=251.84' Storage=3,221 cf Discarded $=0.81$ cfs 11,510 cf Primary $=0.00$ cfs 0 cf	$\begin{aligned} & \text { Inflow }=3.57 \mathrm{cfs} \quad 11,511 \mathrm{cf} \\ & \text { Outflow }=0.81 \mathrm{cfs} \quad 11,510 \mathrm{cf} \end{aligned}$
Link AP1: To Wetlands		$\begin{aligned} & \text { Inflow }=7.71 \mathrm{cfs} \quad 25,098 \mathrm{cf} \\ & \text { Primary }=7.71 \mathrm{cfs} 25,098 \mathrm{cf} \end{aligned}$
Link AP2: To Offsite		$\begin{aligned} & \text { Inflow=3.15 cfs } 9,864 \mathrm{cf} \\ & \text { Primary=3.15 cfs } 9,864 \mathrm{cf} \end{aligned}$
Link AP3: Abutter Depressio	ion	$\begin{aligned} & \text { Inflow }=1.73 \mathrm{cfs} \quad 3,718 \mathrm{cf} \\ & \text { Primary }=1.73 \mathrm{cfs} \\ & 3,718 \mathrm{cf} \end{aligned}$

Summary for Subcatchment A1: To Area Drain

Runoff $=\quad 0.21$ cfs @ 12.09 hrs, Volume= 667 cf , Depth> 3.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN Description			
	2,664	61	>75\% Gras	cover, Go	od, HSG B
2,664		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment A2: To Exterior

Runoff $=0.14$ cfs @ 12.09 hrs, Volume= 441 cf, Depth> 3.01"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN Description			
	1,761	61	>75\% Gras	cover, Good	od, HSG B
1,761		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment A3: To Exterior

Runoff $=\quad 0.45$ cfs @ 12.09 hrs, Volume= $\quad 1,397$ cf, Depth> 5.08"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 1,649 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,652 | 98 | Roofs, HSG B |

Summary for Subcatchment A4: To Roof Drain

Runoff $=\quad 0.35$ cfs @ 12.08 hrs, Volume= $1,239 \mathrm{cf}$, Depth> 7.14" Routed to Pond SIS2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN Description			
	2,082	98 Roofs, HSG B			
	2,082	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A5: To Abutter

Runoff $=1.88$ cfs @ 12.17 hrs, Volume= $\quad 7,117$ cf, Depth> $3.21^{\prime \prime}$
Routed to Pond EX : Existing Abutter Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 23,897 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,201 | 55 | Woods, Good, HSG B |
| 1,507 | 98 | Roofs, HSG B |

Summary for Subcatchment A6: To Abutter
Runoff $=\quad 3.15$ cfs @ 12.09 hrs, Volume= $9,864 \mathrm{cf}$, Depth> 3.21"

Routed to Link AP2 : To Offsite
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Description		
	1,281	98 P	Paved parking, HSG B		
	25,992	61 >	>75\% Grass cover, Good, HSG B		
	7,984	55	Woods, Good, HSG B		
	1,566	98 R	Roofs, HSG B		
	36,823	63 V	Weighted Average		
	33,976		92.27\% Pervious Area		
	2,847		7.73\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment A7: To Infiltration Basin

Runoff $=\quad 1.45$ cfs @ 12.09 hrs, Volume= $4,564 \mathrm{cf}$, Depth> 3.01"

Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN Description			
	18,226	61	>75\% Gras	cover, Go	od, HSG B
18,226		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment A8: To Exterior

Runoff $=\quad 2.33$ cfs @ 12.09 hrs, Volume= $7,398 \mathrm{cf}$, Depth> 2.90"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Pescription Paved parking, HSG B		
	476	98 P			
	20,641	$61>$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	9,484	55	Woods, Go	d, HSG B	
	30,601	60	Weighted Average		
	30,125		98.44\% Pervious Area		
	476		1.56\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R1: To CB\#1

Runoff $=\quad 1.69 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 5,465 \mathrm{cf}$, Depth> 5.88"
Routed to Pond CB1: CB\#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Description Paved parking, HSG B		
	7,872	9861			
	3,280		Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	11,152	87	Weighted Average		
	3,280		29.41\% Pervious Area		
	7,872		70.59\% Imp	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R2: To CB-2

Runoff $=\quad 3.23$ cfs @ 12.09 hrs, Volume= $10,271 \mathrm{cf}$, Depth> 5.53"
Routed to Pond CB2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Description		
	8,993	98 P			
	8,353	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	4,923	98 R			
	22,269	84	Weighted Average		
	8,353		37.51\% Pervious Area		
	13,916		62.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R3: To RGB

Runoff $=\quad 1.55$ cfs @ 12.08 hrs, Volume= $5,007 \mathrm{cf}$, Depth> 5.88"

Routed to Reach SW3:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Description		
	5,386	98			
	2,948	61 >	>75\% Grass cover, Good, HSG B		
	1,883	98 R	Roofs, HSG B		
	10,217	87 V	Weighted Average		
	2,948		28.85\% Pervious Area		
	7,269		71.15\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R4: To CB-4

Runoff $=\quad 2.23$ cfs @ 12.09 hrs, Volume $=\quad 7,152 \mathrm{cf}$, Depth> 5.77" Routed to Pond CB4 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Description		
	7,280	98 P			
	4,998	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	2,609	98 R	Roofs, HSG B		
	14,887	86	Weighted Average 33.57\% Pervious Area 66.43\% Impervious Area		
	4,998				
	9,889				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{gathered} \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \end{gathered}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R5: To Foxhole

Runoff $=\quad 4.00$ cfs @ 12.14 hrs, Volume= $14,365 \mathrm{cf}$, Depth> 5.07"
Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

Summary for Subcatchment R6: To CB-6

Runoff $=\quad 2.55$ cfs @ 12.22 hrs, Volume $=10,745 \mathrm{cf}$, Depth> 4.96"
Routed to Pond CB6 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

Summary for Subcatchment R7: To CB-5

Runoff $=\quad 3.27$ cfs @ 12.16 hrs, Volume $=12,290 \mathrm{cf}$, Depth> 4.62"
Routed to Pond CB5 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

Summary for Subcatchment R8: To RGB 2

Runoff $=\quad 2.54$ cfs @ 12.09 hrs, Volume= $8,112 \mathrm{cf}$, Depth> 5.65" Routed to Pond HW2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Pescription parking, HSG B		
	6,729	98			
	6,213	$61>$	>75\% Grass cover, Good, HSG B		
	4,288	98 R	Roofs, HSG B		
	17,230	85	Weighted Average		
	6,213		36.06\% Pervious Area		
	11,017		63.94\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment R9: To RGB 1

Runoff $=\quad 1.16$ cfs @ 12.08 hrs, Volume= $4,005 \mathrm{cf}$, Depth> 6.82"
Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Paved parking, HSG B		
	4,963	98 P			
	630	61 >	Paved parking, HSG B >75\% Grass cover, Good, HSG B Roofs, HSG B		
	1,458	98 R			
	7,051	95 V	Weighted Average		
	630		8.93\% Pervious Area		
	6,421		91.07\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{r} \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S3: To Swale

Runoff $=\quad 1.11$ cfs @ 12.09 hrs, Volume $=\quad 3,422 \mathrm{cf}$, Depth> 4.08"
Routed to Reach SW3:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	Area (sf)	CN D	Description Paved parking, HSG B		
	2,611	98 P			
	7,466	$61>$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	10,077	71 V	Weighted Average		
	7,466		74.09\% Pervious Area		
	2,611		25.91\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S4: To Swale

Runoff $=\quad 0.15$ cfs @ 12.09 hrs, Volume= 469 cf , Depth> 4.18"

Routed to Pond CB7 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

	rea (sf)	CN	Description		
	392	98	Paved parking, HSG B		
	954	61	>75\% Grass cover, Good, HSG B		
	1,346	72	Weighted Average		
	954		70.88\% Pervious Area		
	392		29.12\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{r} \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S8: To Swale

Runoff $=\quad 0.62$ cfs @ 12.09 hrs, Volume= $1,923 \mathrm{cf}$, Depth> 4.41"

Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-yr Rainfall=7.42"

Area (sf)	CN	Description
1,788	98	Paved parking, HSG B
3,451	61	>75\% Grass cover, Good, HSG B
5,239	74	Weighted Average
3,451		65.87\% Pervious Area
1,788		34.13% Impervious Area
Tc	Length	Slope
Velocity	Capacity	Description
(min)	(feet)	(ft/ft)
(ft/sec)	(cfs)	
6.0		Direct Entry,

Summary for Reach SW3:

Inflow Area = $\quad 20,294$ sf, 48.68% Impervious, Inflow Depth > 4.98" for 50-yr event
Inflow $=2.65 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $8,429 \mathrm{cf}$
Outflow $=2.26$ cfs @ 12.14 hrs , Volume $=8,395 \mathrm{cf}$, Atten= 15%, Lag $=3.0 \mathrm{~min}$
Routed to Pond CB7 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity= 1.65 fps , Min. Travel Time $=5.1 \mathrm{~min}$
Avg. Velocity $=0.54 \mathrm{fps}$, Avg. Travel Time $=15.4 \mathrm{~min}$
Peak Storage= 688 cf @ 12.14 hrs
Average Depth at Peak Storage=0.47' , Surface Width= 4.33'
Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 28.59 cfs
1.50 x 1.50' deep channel, n= 0.041 Riprap, 2-inch

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=501.0' Slope= 0.0100 '/'
Inlet Invert= 256.12', Outlet Invert= 251.10'

Summary for Reach SW8:

Inflow Area = $\quad 12,290$ sf, 66.79% Impervious, Inflow Depth > 5.79" for 50 -yr event
Inflow $=1.78 \mathrm{cfs}$ @ 12.09 hrs , Volume= $5,929 \mathrm{cf}$
Outflow = 1.28 cfs @ 12.16 hrs , Volume $=\quad 5,892 \mathrm{cf}$, Atten= 28%, Lag= 4.6 min
Routed to Pond HW2 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity $=0.39 \mathrm{fps}$, Min. Travel Time $=9.9 \mathrm{~min}$
Avg. Velocity $=0.14 \mathrm{fps}$, Avg. Travel Time $=26.9 \mathrm{~min}$
Peak Storage= 765 cf @ 12.16 hrs
Average Depth at Peak Storage=0.83' , Surface Width=6.46'
Bank-Full Depth $=1.50$ ' Flow Area= 9.0 sf, Capacity $=4.93$ cfs
1.50 ' x 1.50 ' deep channel, $n=0.240$ Sheet flow over Dense Grass

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=232.0' Slope= 0.0102 '/'
Inlet Invert= 255.37', Outlet Invert= 253.00'

Summary for Pond AD:

Inflow Area $=\quad 2,664$ sf, 0.00% Impervious, Inflow Depth > 3.01" for 50 -yr event
Inflow $=0.21$ cfs @ 12.09 hrs, Volume= 667 cf
Outflow = 0.21 cfs @ 12.09 hrs , Volume $=\quad 667 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary = 0.21 cfs @ 12.09 hrs , Volume= 667 cf Routed to Pond DMH1:

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.63' @ 12.49 hrs
Flood Elev=250.75'

Device	Routing	Invert	Outlet Devices
\#1	Primary	248.60'	8.0" Round Culvert
			$\mathrm{L}=26.4{ }^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 248.60' / 248.47' S=0.0049 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.35 sf

Primary OutFlow Max=0.21 cfs @ 12.09 hrs HW=249.02' TW=248.95' (Dynamic Tailwater)
——1=Culvert (Outlet Controls 0.21 cfs @ 1.31 fps)

Summary for Pond CB1: CB\#1

Inflow Area =	52	pervious	Inflow Depth > 5.88" for 50-yr event
Inflow	1.69 cfs @	12.08 hrs , Volume=	5,465 cf
Outflow	1.69 cfs @	12.08 hrs , Volume=	$5,465 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	1.69 cfs @	12.08 hrs, Volume=	5,465 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.78' @ 12.08 hrs
Flood Elev=251.50'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.00^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=93.3^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= 249.00 ' $/ 248.53^{\prime} \mathrm{S}=0.0050 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf	

Primary OutFlow Max=1.68 cfs @ 12.08 hrs HW=249.77' TW=248.92' (Dynamic Tailwater)
——1=Culvert (Barrel Controls 1.68 cfs @ 3.56 fps)

Summary for Pond CB2:

Inflow	22,269	ious,	Inflow Depth > 5.53" for 50-yr event
Inflow	3.23 cfs @	12.09 hrs , Volume=	10,271 cf
Outflow	3.23 cfs @	12.09 hrs , Volume=	10,271 cf, Atten= 0\%, Lag= 0.0 min
Primary	3.23 cfs @	12.09 hrs , Volume=	10,271 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=252.43' @ 12.09 hrs
Flood Elev= 254.02'

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :--- | :--- | :--- |
| $\# 1$ | Primary | $251.20 '$ | $12.0^{\prime \prime}$ Round Culvert |
| | | $L=73.9^{\prime}$ RCP, sq.cut end projecting, Ke=0.500 | |
| | | Inlet $/$ Outlet Invert= $251.20^{\prime} / 250.46$ ' $\mathrm{S}=0.0100 \mathrm{Cc}=0.900$ | |
| | | $\mathrm{n}=0.011$ Concrete pipe, straight $\&$ clean, Flow Area= $=0.79 \mathrm{sf}$ | |

Primary OutFlow Max=3.21 cfs @ 12.09 hrs HW=252.42' TW=250.51' (Dynamic Tailwater)

Summary for Pond CB4:

Inflow	87	66.43\% Impervious,	Inflow Depth	5.77" for 50-yr event
Inflow	2.23 cfs @	12.09 hrs , Volume=	7,152 cf	
Outflow	2.23 cfs @	12.09 hrs , Volume=	7,152 cf	f, Atten= 0\%, Lag= 0.0 min
Primary	2.23 cfs @	12.09 hrs , Volume=	7,152 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.68' @ 12.32 hrs
Flood Elev=250.69'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	247.83^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L=14.5}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $247.83^{\prime} / 247.55$ ' $\mathrm{S}=0.0193 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=2.21 cfs @ 12.09 hrs HW=248.67' TW=248.04' (Dynamic Tailwater)

Summary for Pond CB5:

Inflow	31,901	vious,	Inflow Depth > 4.62" for 50-yr event
Inflow	3.27 cfs @	12.16 hrs , Volume=	12,290 cf
Outflow	3.27 cfs @	12.16 hrs , Volume=	12,290 cf, Atten= 0\%, Lag= 0.0 min
Primary	3.27 cfs @	12.16 hrs , Volume=	12,290 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=251.77' @ 12.15 hrs
Flood Elev=252.45'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	250.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=8.5^{\prime}$ RCP, sq.cut end projecting, Ke= $=0.500$	
		Inlet / Outlet Invert $250.30^{\prime} / 250.20$ ' $\mathrm{S}=0.0118 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf	

Primary OutFlow Max=3.26 cfs @ 12.16 hrs HW=251.76' TW=251.01' (Dynamic Tailwater)
—1 $^{\text {=Culvert }}$ (Inlet Controls 3.26 cfs @ 4.15 fps)

Summary for Pond CB6:

Inflow Area $=$	26,016 sf, 47.47% Impervious,	Inflow Depth $>4.96 "$ for $50-\mathrm{yr}$ event		
Inflow	$=$	$2.55 \mathrm{cfs} @$	12.22 hrs , Volume=	$10,745 \mathrm{cf}$
Outflow	$=$	$2.55 \mathrm{cfs} @$	12.22 hrs , Volume $=$	$10,745 \mathrm{cf}$, Atten= $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$2.55 \mathrm{cfs} @$	12.22 hrs , Volume $=$	$10,745 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 249.59' @ 12.21 hrs
Flood Elev= 250.82'

Device	Routing	Invert	Outlet Devices
\#1	Primary	248.30'	12.0" Round Culvert
			$\mathrm{L}=6.3^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 248.30' 248.26 ' S=0.0063 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.55 cfs @ 12.22 hrs HW=249.59' TW=249.14' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 2.55 cfs @ 3.24 fps)

Summary for Pond CB7:

Inflow Area $=$	21,640 sf, 47.47% Impervious,	Inflow Depth $>4.92 "$	for 50 -yr event	
Inflow	$=$	$2.39 \mathrm{cfs} @$	12.13 hrs , Volume	$8,865 \mathrm{cf}$
Outflow	$=$	$2.39 \mathrm{cfs} @$	12.13 hrs , Volume $=$	$8,865 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$2.39 \mathrm{cfs} @$	12.13 hrs , Volume $=$	$8,865 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.89' @ 12.16 hrs
Flood Elev=253.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	248.00^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=88.3^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $248.00^{\prime} / 247.50^{\prime} \quad \mathrm{S}=0.0057 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=2.25 cfs @ 12.13 hrs HW=248.88' TW=248.48' (Dynamic Tailwater)
①=Culvert (Outlet Controls 2.25 cfs @ 3.01 fps)

Summary for Pond DMH1:

 Routed to Pond SIS1 : Stormtech

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.63' @ 12.49 hrs
Flood Elev=252.50'

Device	Routing	Invert	Outlet Devices		
\#1	Primary	$248.40 '$	12.0" Round MANIFOLD		
			$\mathrm{L}=6.0^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.40' $/ 248.35$ S $\mathrm{S}=0.0083$ '/' Cc= 0.900		
			$\mathrm{n}=0.010 \mathrm{PVC}$, smooth interior, Flow Area= 0.79 sf		
\#2	Primary	248.28'	24.0" Round ISOLATOR		
			$\mathrm{L}=4.0^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.28' $/ 248.25{ }^{\text {' }}$ S $=0.0075$ '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf		
Primary OutFlow Max=1.91 cfs @ 12.09 hrs HW=248.93' TW=248.81' (Dynamic Tailwater) -1=MANIFOLD (Outlet Controls 0.62 cfs @ 2.14 fps) 2=ISOLATOR (Outlet Controls 1.29 cfs @ 2.19 fps)					

Summary for Pond DMH3:

Inflow Area =	(iou	Depth > 4.92" for 50-yr event
Inflow	2.39 cfs @	12.13 hrs , Volume=	8,865 cf
Outflow	2.39 cfs @	12.13 hrs , Volume=	8,865 cf, Atten= 0\%, Lag= 0.0 min
Primary	2.39 cfs @	12.13 hrs , Volume=	8,865 cf

Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.66' @ 12.33 hrs
Flood Elev=251.98'

Device	Routing	Invert	Outlet Devices
\#1	Primary	247.45'	18.0" Round Culvert
			$\mathrm{L}=68.2 \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 247.45' / 247.10' S=0.0051 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 1.77 sf

Primary OutFlow Max=2.39 cfs @ 12.13 hrs HW=248.48' TW=248.24' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 2.39 cfs @ 2.59 fps)

Summary for Pond DMH4:

Inflow Area =	36,527	vious,	Inflow Depth > 5.26" for 50-yr event
Inflow	4.47 cfs @	12.11 hrs , Volume=	16,017 cf
Outflow	4.47 cfs @	12.11 hrs , Volume=	$16,017 \mathrm{cf}$, Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	4.47 cfs @	12.11 hrs , Volume=	16,017 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.61' @ 12.36 hrs
Flood Elev=251.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	246.60'	24.0" Round Culvert
			$\mathrm{L}=34.6^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 246.60' ${ }^{\text {2 }}$ 246.43' S=0.0049 '/l' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=4.46 cfs @ 12.11 hrs HW=248.13' TW=247.97' (Dynamic Tailwater)
——1=Culvert (Outlet Controls 4.46 cfs @ 2.39 fps)

Summary for Pond DMH5:

Inflow	29,520 s	vious,	Inflow Depth > 5.69" for 50-yr event
Inflow	3.63 cfs @	12.10 hrs , Volume=	14,004 cf
Outflow	3.63 cfs @	12.10 hrs , Volume=	$14,004 \mathrm{cf}$, Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	3.63 cfs @	12.10 hrs , Volume=	14,004 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=252.66' @ 12.10 hrs
Flood Elev=254.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	251.65^{\prime}	$15.0^{\prime \prime}$ Round Culvert
		$L=116.8^{\prime}$ RCP, sq.cut end projecting, Ke= 0.500	
		Inlet / Outlet Invert= $251.655^{\prime} / 250.46^{\prime} \quad \mathrm{S}=0.0102 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight $\&$ clean, Flow Area= $=1.23 \mathrm{sf}$	

Primary OutFlow Max=3.62 cfs @ 12.10 hrs HW=252.66' TW=251.02' (Dynamic Tailwater)
①=Culvert (Inlet Controls 3.62 cfs @ 3.42 fps)

Summary for Pond DMH6:

 Routed to Pond DMH7:

Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=251.06' @ 12.13 hrs
Flood Elev= 252.93'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.71^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=160.8^{\prime}$ RCP, sq.cut end projecting, Ke= 0.500	
		Inlet / Outlet Invert= $249.71^{\prime} / 248.10^{\prime} \quad \mathrm{S}=0.0100 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight $\&$ clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=6.58 cfs @ 12.13 hrs HW=251.05' TW=249.04' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 6.58 cfs @ 3.94 fps)

Summary for Pond DMH7:

Inflow Area $=\quad 87,437$ sf, 50.61% Impervious, Inflow Depth > 5.08" for 50-yr event
Inflow $=8.78 \mathrm{cfs} @ 12.15 \mathrm{hrs}$, Volume= $37,039 \mathrm{cf}$
Outflow $=8.78 \mathrm{cfs}$ @ 12.15 hrs , Volume $=\quad 37,039 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary $=8.78$ cfs @ 12.15 hrs, Volume $=37,039 \mathrm{cf}$

Routed to Pond IB1 : Infiltration Basin \#1
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.14' @ 12.21 hrs
Flood Elev=251.25'

Device	Routing	Invert	Outlet Devices
\#1	Primary	247.60'	24.0" Round Culvert
			$\mathrm{L}=111.5^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 247.60' / 246.65' S=0.0085 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=8.77 cfs @ 12.15 hrs HW=249.08' TW=248.18' (Dynamic Tailwater)
①=Culvert (Outlet Controls 8.77 cfs @ 4.89 fps)

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	26,605 sf,	5.66\% Impervious,	Inflow Depth > 3.21" for 50-yr event
Inflow	1.88 cfs @	12.17 hrs , Volume=	7,117 cf
Outflow	1.85 cfs @	12.19 hrs , Volume=	7,042 cf, Atten= 2\%, Lag= 1.3 min
Discarded =	0.12 cfs @	12.19 hrs , Volume=	3,324 cf
Primary	1.73 cfs @	12.19 hrs , Volume=	3,718 cf
Routed to	AP3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.35' @ 12.19 hrs Surf.Area= 1,929 sf Storage= 496 cf
Plug-Flow detention time $=25.7$ min calculated for 7,042 cf (99% of inflow)
Center-of-Mass det. time= $19.5 \min (866.8-847.2)$

Discarded OutFlow Max=0.12 cfs @ 12.19 hrs HW=250.35' (Free Discharge)
L1=Exfiltration (Controls 0.12 cfs)
Primary OutFlow Max=1.72 cfs @ 12.19 hrs HW=250.35' TW=0.00' (Dynamic Tailwater)
——2=Broad-Crested Rectangular Weir (Weir Controls 1.72 cfs @ 0.85 fps)

Summary for Pond HW2:

[58] Hint: Peaked 0.01' above defined flood level
[62] Hint: Exceeded Reach SW8 OUTLET depth by 0.25 ' @ 12.08 hrs
Inflow Area $=\quad 29,520$ sf, 65.13% Impervious, Inflow Depth > 5.69" for 50 -yr event
Inflow $=3.63 \mathrm{cfs}$ @ 12.10 hrs , Volume= $14,004 \mathrm{cf}$
Outflow = 3.63 cfs @ 12.10 hrs , Volume= $14,004 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=\quad 3.63$ cfs @ 12.10 hrs , Volume $=\quad 14,004 \mathrm{cf}$
Routed to Pond DMH5 :
Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=254.01' @ 12.10 hrs
Flood Elev=254.00'
Device Routing Invert Outlet Devices
\#1 Primary $\quad 253.00^{\prime} \quad 15.0^{\prime \prime}$ Round Culvert
$\mathrm{L}=14.6^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=253.00' / 251.75' S=0.0856 '/l' Cc=0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.62 cfs @ 12.10 hrs HW=254.01' TW=252.66' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 3.62 cfs @ 3.42 fps)

Summary for Pond IB1: Infiltration Basin \#1

[80] Warning: Exceeded Pond DMH4 by 0.31 ' @ 2.00 hrs (0.76 cfs 859 cf)

Inflow Area =	200,508 sf	48.93\% Impervious,	Depth > 4	r event
Inflow	18.37 cfs @	12.13 hrs , Volume=	71,985 cf	
Outflow	10.00 cfs @	12.37 hrs , Volume=	$71,973 \mathrm{cf}$,	Atten= 46\%, Lag $=14.5 \mathrm{~min}$
Discarded =	3.52 cfs @	12.37 hrs , Volume=	56,110 cf	
Primary	6.48 cfs @	12.37 hrs , Volume=	15,862 cf	
Routed to	AP1 : To Wetla	lands		
Secondary =	0.00 cfs @	2.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 248.60' @ 12.37 hrs Surf.Area= 11,039 sf Storage= $15,583 \mathrm{cf}$
Plug-Flow detention time $=21.1$ min calculated for $71,907 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=20.9 \min (830.0-809.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	247.00^{\prime}	$32,758 \mathrm{cf}$	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
247.00	8,532	373.0	0	0	8,532
248.00	10,075	398.2	9,293	9,293	10,126
249.00	11,718	423.3	10,886	20,179	11,817
250.00	13,461	448.4	12,579	32,758	13,612

Device	Routing	Invert	Outlet Devices
\#1	Discarded	247.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 244.93' Phase-In= 0.01'
\#2	Primary	247.00'	18.0" Round Culvert L=62.2' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=247.00' 246.00 ' $=0.0161$ '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area 1.77 sf
\#3	Device 2	247.00'	6.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 2	248.20'	2.0" x 2.0" Horiz. Orifice/Grate X 8.00 columns
			X 8 rows C= 0.600 in 24.0 " x 24.0" Grate (44% open area)
			Limited to weir flow at low heads
\#5	Secondary	249.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=3.52 cfs @ 12.37 hrs HW=248.60' (Free Discharge)
—1=Exfiltration (Controls 3.52 cfs)
Primary OutFlow Max=6.48 cfs @ $12.37 \mathrm{hrs} \mathrm{HW}=248.60^{\prime}$ TW=0.00' (Dynamic Tailwater)
$亡_{2}=$ Culvert (Passes 6.48 cfs of 7.82 cfs potential flow)

- 3=Orifice/Grate (Orifice Controls 1.10 cfs @ 5.59 fps)

4=Orifice/Grate (Orifice Controls 5.38 cfs @ 3.03 fps)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.00' TW=0.00' (Dynamic Tailwater)
$L_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \text { cfs) }}$

Summary for Pond SIS1: Stormtech

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 249.63' @ 12.49 hrs Surf.Area= 1,242 sf Storage $=1,588 \mathrm{cf}$
Plug-Flow detention time $=23.7$ min calculated for 6,127 of (100% of inflow)
Center-of-Mass det. time $=23.7 \mathrm{~min}(817.1-793.4)$

Discarded OutFlow Max=0.44 cfs @ 12.49 hrs HW=249.63' (Free Discharge)
L-1=Exfiltration (Controls 0.44 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.75' TW=0.00' (Dynamic Tailwater)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS1: Stormtech - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81 ' Cap Length $\times 2=58.58$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=60.58$ ' Base Length
4 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0$ " Side Stone $\times 2=20.50^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.50^{\prime}$ Field Height

32 Chambers $\times 45.9$ cf $=1,470.1$ cf Chamber Storage
$4,346.4$ cf Field $-1,470.1$ cf Chambers $=2,876.3$ cf Stone $\times 40.0 \%$ Voids $=1,150.5$ cf Stone Storage
Chamber Storage + Stone Storage $=2,620.6 \mathrm{cf}=0.060 \mathrm{af}$
Overall Storage Efficiency $=60.3 \%$
Overall System Size $=60.58^{\prime} \times 20.50^{\prime} \times 3.50^{\prime}$
32 Chambers
161.0 cy Field
106.5 cy Stone

Summary for Pond SIS2:

Volume	Invert	Avail.Storage	Storage Description
\#1A	249.00'	1,603 cf	44.25'W x 39.22'L x 3.50'H Field A
			6,074 cf Overall - 2,067 cf Embedded $=4,006$ cf $\times 40.0 \%$ Voids
\#2A	$249.50{ }^{\prime}$	2,067 cf	ADS_StormTech SC-740 +Cap 45 Inside \#1
			Effective Size $=44.6$ " $\mathrm{W} \times 30.0$ " $\mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			45 Chambers in 9 Rows
\#3	250.80'	38 cf	4.00 'D x 3.00'H Vertical Cone/Cylinder
$3,708 \mathrm{cf}$ Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outle	Outlet Devices
\#1	Discarded	249.00' 8.27	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
		Con	uctivity to Groundwater Elevation $=247.00$ ' Phase-In= 0.01'
\#2	Primary	253.50' 2.0'	2.0" x 2.0" Horiz. Orifice/Grate X 6.00 columns
		X 6 rows $\mathrm{C}=0.600$ in 24.0 " $\times 24.0$ " Grate (25% open area)	
		Limited to weir flow at low heads	

Discarded OutFlow Max=0.81 cfs @ 12.49 hrs HW=251.84' (Free Discharge)
—1=Exfiltration (Controls 0.81 cfs)
Primary OutFlow Max=0.00 cfs @ 2.00 hrs HW=249.00' TW=247.00' (Dynamic Tailwater)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS2: - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= 44.6 "W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{" ~ C-C ~ R o w ~ S p a c i n g ~}$

5 Chambers/Row x 7.12' Long +0.81' Cap Length x $2=37.22^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=39.22^{\prime}$ Base Length
9 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone $\times 2=44.25^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height +6.0 " Stone Cover $=3.50$ Field Height

45 Chambers $\times 45.9 \mathrm{cf}=2,067.3 \mathrm{cf}$ Chamber Storage
6,073.7 cf Field - 2,067.3 cf Chambers $=4,006.4$ cf Stone $\times 40.0 \%$ Voids $=1,602.6$ cf Stone Storage
Chamber Storage + Stone Storage $=3,669.9 \mathrm{cf}=0.084$ af
Overall Storage Efficiency $=60.4 \%$
Overall System Size $=39.22^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
45 Chambers
225.0 cy Field
148.4 cy Stone

Summary for Link AP1: To Wetlands

In	236,171 sf, 42.45\% Impervious,	Depth > 1.28" for 50-yr event
Infl	7.71 cfs @ 12.33 hrs, Volume=	25,098 cf
Primary	7.71 cfs @ 12.33 hrs , Volume=	$25,098 \mathrm{cf}$, Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP2: To Offsite

Inflow Area $=$	$36,823 \mathrm{sf}$,	7.73% Impervious,	Inflow Depth $>3.21 "$ for 50 -yr event	
Inflow	$=$	$3.15 \mathrm{cfs} @$	12.09 hrs , Volume	$9,864 \mathrm{cf}$
Primary	$=$	$3.15 \mathrm{cfs} @$	12.09 hrs , Volume $=$	$9,864 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP3: Abutter Depression

Inflow Area $=$	$26,605 \mathrm{sf}$,	5.66% Impervious,	Inflow Depth $=1.68 "$ for 50 -yr event	
Inflow	$=$	$1.73 \mathrm{cfs} @$	12.19 hrs , Volume $=$	$3,718 \mathrm{cf}$
Primary	$=$	$1.73 \mathrm{cfs} @$	12.19 hrs , Volume $=$	$3,718 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Time span=2.00-24.00 hrs, dt=0.02 hrs, 1101 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: To Area Drain

SubcatchmentA2: To Exterior

Subcatchment A3: To Exterior

Subcatchment A4: To Roof Drain

Subcatchment A5: To Abutter

Subcatchment A6: To Abutter

Subcatchment A7: To Infiltration Basin

Subcatchment A8: To Exterior

SubcatchmentR1: To CB\#1

Subcatchment R2: To CB-2

Subcatchment R3: To RGB

SubcatchmentR4: To CB-4

Subcatchment R5: To Foxhole

Subcatchment R6: To CB-6

SubcatchmentR7: To CB-5

Subcatchment R8: To RGB 2

Runoff Area $=2,664$ sf 0.00% Impervious Runoff Depth $>4.11^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=0.29 \mathrm{cfs} 912 \mathrm{cf}$

Runoff Area $=1,761$ sf 0.00% Impervious Runoff Depth $>4.1^{\prime \prime}$ Tc=6.0 min CN=61 Runoff=0.19 cfs 603 cf

Runoff Area=3,301 sf 50.05% Impervious Runoff Depth>6.43" Tc=6.0 min CN=80 Runoff=0.56 cfs $1,769 \mathrm{cf}$

Runoff Area $=2,082$ sf 100.00% Impervious Runoff Depth >8.56 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.42 \mathrm{cfs} 1,486 \mathrm{cf}$

Runoff Area=26,605 sf 5.66% Impervious Runoff Depth>4.35" Flow Length=212' Tc=11.8 min CN=63 Runoff=2.57 cfs $9,635 \mathrm{cf}$

Runoff Area=36,823 sf 7.73% Impervious Runoff Depth $>4.35^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=63$ Runoff=4.30 cfs $13,352 \mathrm{cf}$

Runoff Area $=18,226$ sf 0.00% Impervious Runoff Depth $>4.11^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61$ Runoff $=2.00 \mathrm{cfs} 6,239 \mathrm{cf}$

Runoff Area=30,601 sf 1.56% Impervious Runoff Depth >3.99 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=60$ Runoff $=3.25 \mathrm{cfs} 10,166 \mathrm{cf}$

Runoff Area=11,152 sf 70.59% Impervious Runoff Depth>7.28" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff= $2.07 \mathrm{cfs} 6,768 \mathrm{cf}$

Runoff Area=22,269 sf 62.49\% Impervious Runoff Depth>6.92" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=3.99 cfs $12,837 \mathrm{cf}$

Runoff Area $=10,217$ sf 71.15% Impervious Runoff Depth >7.28 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff= $1.90 \mathrm{cfs} 6,201 \mathrm{cf}$

Runoff Area=14,887 sf 66.43% Impervious Runoff Depth $>7.1^{\text {" }}$ Tc=6.0 min CN=86 Runoff=2.73 cfs $8,884 \mathrm{cf}$

Runoff Area=33,967 sf 52.12% Impervious Runoff Depth>6.42" Flow Length=327' Tc=10.1 $\mathrm{min} \quad \mathrm{CN}=80$ Runoff=5.02 cfs $18,186 \mathrm{cf}$

Runoff Area=26,016 sf 47.47% Impervious Runoff Depth>6.30" Flow Length=248' \quad cc=16.0 min CN=79 Runoff=3.22 cfs 13,650 cf

Runoff Area $=31,901$ sf 39.74% Impervious Runoff Depth >5.93 " Flow Length=303' Tc=11.9 min CN=76 Runoff=4.17 cfs $15,775 \mathrm{cf}$

Runoff Area=17,230 sf 63.94\% Impervious Runoff Depth>7.04" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=85$ Runoff $=3.12 \mathrm{cfs} 10,107 \mathrm{cf}$

Subcatchment R9: To RGB 1

SubcatchmentS3: To Swale

SubcatchmentS4: To Swale

SubcatchmentS8: To Swale

Reach SW3:

Reach SW8:

Pond AD:

Pond CB1: CB\#1

Pond CB2:

Pond CB4:

Pond CB5:

Pond CB6:

Pond CB7:

Pond DMH1:

Pond DMH3:

Pond DMH4:

Pond DMH5:

Pond DMH6:

Runoff Area=7,051 sf 91.07% Impervious Runoff Depth $>8.25{ }^{\prime \prime}$ Tc=6.0 min CN=95 Runoff=1.39 cfs $4,845 \mathrm{cf}$

Runoff Area $=10,077$ sf 25.91% Impervious Runoff Depth >5.33 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=71$ Runoff=$=1.44 \mathrm{cfs} 4,475 \mathrm{cf}$

Runoff Area $=1,346$ sf 29.12% Impervious Runoff Depth $>5.45^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=72$ Runoff $=0.20 \mathrm{cfs} 611 \mathrm{cf}$

Runoff Area=5,239 sf 34.13% Impervious Runoff Depth >5.70 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=74$ Runoff $=0.80 \mathrm{cfs} 2,487 \mathrm{cf}$

Avg. Flow Depth=0.53' Max Vel=1.76 fps Inflow=3.34 cfs $10,675 \mathrm{cf}$ n=0.041 L=501.0' $\mathrm{S}=0.0100$ '// Capacity=28.59 cfs Outflow=2.88 cfs $10,637 \mathrm{cf}$

Avg. Flow Depth=0.92' Max Vel=0.41 fps Inflow=2.19 cfs $7,331 \mathrm{cf}$ $\mathrm{n}=0.240 \mathrm{~L}=232.0^{\prime} \mathrm{S}=0.0102 \mathrm{l} / \mathrm{Capacity=}=4.93 \mathrm{cfs}$ Outflow=1.61 cfs 7,290 cf

Peak Elev=250.30' Inflow=0.29 cfs 912 cf 8.0" Round Culvert n=0.011 L=26.4' $\mathrm{S}=0.0049$ '/' Outflow=0.29 cfs 912 cf

Peak Elev=250.32' Inflow=2.07 cfs 6,768 cf
12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=93.3^{\prime} \mathrm{S}=0.0050$ '/' Outflow=2.07 cfs $6,768 \mathrm{cf}$

Peak Elev=254.00' Inflow=3.99 cfs $12,837 \mathrm{cf}$ 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=73.9$ ' $\mathrm{S}=0.0100$ '/' Outflow=3.99 cfs 12,837 cf

Peak Elev=249.05' Inflow=2.73 cfs 8,884 cf 12.0" Round Culvert n=0.011 L=14.5' S=0.0193 '/' Outflow=2.73 cfs 8,884 cf

Peak Elev=252.58' Inflow=4.17 cfs 15,775 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=8.5^{\prime} \mathrm{S}=0.0118 \mathrm{l} / \mathrm{l}$ ' Outflow=$=4.17 \mathrm{cfs} 15,775 \mathrm{cf}$

Peak Elev=250.18' Inflow=3.22 cfs 13,650 cf 12.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=6.3^{\prime} \mathrm{S}=0.0063$ '/' Outflow=3.22 cfs $13,650 \mathrm{cf}$

Peak Elev=249.13' Inflow=3.06 cfs $11,248 \mathrm{cf}$ 18.0" Round Culvert $n=0.011$ L=88.3' $\mathrm{S}=0.0057$ '//' Outflow=3.06 cfs 11,248 cf

Peak Elev=250.30' Inflow=2.36 cfs 7,680 cf Outflow=2.36 cfs 7,680 cf

Peak Elev=249.02' Inflow=3.06 cfs 11,248 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=68.2^{\prime} \mathrm{S}=0.0051$ '//' Outflow=3.06 cfs $11,248 \mathrm{cf}$

Peak Elev=248.98' Inflow=5.61 cfs 20,132 cf 24.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=34.6^{\prime} \mathrm{S}=0.0049$ '/' Outflow=5.61 cfs $20,132 \mathrm{cf}$

Peak Elev=252.85' Inflow=4.50 cfs 17,397 cf 15.0" Round Culvert n=0.011 L=116.8' S=0.0102 '/' Outflow=4.50 cfs $17,397 \mathrm{cf}$

Peak Elev=251.41' Inflow=8.31 cfs 33,172 cf 18.0" Round Culvert $\mathrm{n}=0.011 \mathrm{~L}=160.8^{\prime} \mathrm{S}=0.0100$ '/' Outflow=8.31 cfs $33,172 \mathrm{cf}$

Summary for Subcatchment A1: To Area Drain

Runoff $=\quad 0.29$ cfs @ 12.09 hrs, Volume= 912 cf , Depth> 4.11"

Routed to Pond AD :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN	Description$>75 \%$ Grass cover, Good, HSG B		
2,664		61			
	2,664	100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A2: To Exterior

Runoff $=\quad 0.19 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= 603 cf , Depth> 4.11"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN Description			
	1,761	61	>75\% Gras	cover, Go	od, HSG B
1,761		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment A3: To Exterior

Runoff $=\quad 0.56$ cfs @ 12.09 hrs, Volume $=1,769 \mathrm{cf}$, Depth> 6.43"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 1,649 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,652 | 98 | Roofs, HSG B |

Summary for Subcatchment A4: To Roof Drain

Runoff $=0.42$ cfs @ 12.08 hrs, Volume $=1,486 \mathrm{cf}$, Depth> 8.56"
Routed to Pond SIS2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN Description			
	2,082	98 Roofs, HSG B			
	2,082	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A5: To Abutter

Runoff $=$
Routed to Pond EX : Existing Abutter Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 23,897 | 61 | $>75 \%$ Grass cover, Good, HSG B |
| 1,201 | 55 | Woods, Good, HSG B |
| 1,507 | 98 | Roofs, HSG B |

Summary for Subcatchment A6: To Abutter
Runoff $=\quad 4.30$ cfs @ 12.09 hrs, Volume $=13,352$ cf, Depth> 4.35"
Routed to Link AP2 : To Offsite
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description		
	1,281	98 P	Paved parking, HSG B		
	25,992	$61>$	>75\% Grass cover, Good, HSG B		
	7,984	55	Woods, Good, HSG B		
	1,566	98 R	Roofs, HSG B		
	36,823	63 W	Weighted Average		
	33,976		92.27\% Pervious Area		
	2,847		7.73\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A7: To Infiltration Basin

Runoff $=\quad 2.00$ cfs @ 12.09 hrs, Volume $=\quad 6,239 \mathrm{cf}$, Depth> 4.11"

Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	rea (sf)	CN Description			
	18,226	61	>75\% Gras	s cover, Go	od, HSG B
18,226		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment A8: To Exterior

Runoff $=\quad 3.25$ cfs @ 12.09 hrs, Volume= 10,166 cf, Depth> 3.99"

Routed to Link AP1 : To Wetlands
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description		
	476	98 P			
	20,641	61 >	>75\% Grass cover, Good, HSG B		
	9,484	55	Woods, Good, HSG B		
	30,601	60 V	Weighted Average		
	30,125		98.44\% Pervious Area		
	476		1.56\% Imper	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entr

Summary for Subcatchment R1: To CB\#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

Area (sf)	CN	Description
7,872	98	Paved parking, HSG B
3,280	61	>75\% Grass cover, Good, HSG B
11,152	87	Weighted Average
3,280		29.41\% Pervious Area
7,872		70.59% Impervious Area
Tc	Length	Slope
Velocity	Capacity	Description
(min)	(feet)	(ft/ft)
(ft/sec)	(cfs)	
6.0		Direct Entry,

Summary for Subcatchment R2: To CB-2

Runoff $=3.99$ cfs @ 12.08 hrs, Volume= 12,837 cf, Depth> 6.92" Routed to Pond CB2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description		
	8,993	98 P			
	8,353	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	4,923	98 R			
	22,269	84	Weighted Average		
	8,353		37.51\% Pervious Area		
	13,916		62.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R3: To RGB

Runoff $=1.90$ cfs @ 12.08 hrs, Volume= 6,201 cf, Depth> 7.28"
Routed to Reach SW3:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description Paved parking, HSG B		
	5,386	98 P			
	2,948	61 >	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	1,883	98 R	Roofs, HSG B		
	10,217	87 W	Weighted Average		
	2,948		28.85\% Pervious Area		
	7,269		71.15\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R4: To CB-4

Runoff $=\quad 2.73$ cfs @ 12.08 hrs, Volume= 8,884 cf, Depth> 7.16"
Routed to Pond CB4 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description		
	7,280	98 P			
	4,998	$61>$	Paved parking, HSG B >75\% Grass cover, Good, HSG B		
	2,609	98 R	Roofs, HSG		
	14,887	86	Weighted Average		
	4,998		33.57\% Pervious Area		
	9,889		66.43\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R5: To Foxhole

Runoff $=\quad 5.02$ cfs @ 12.14 hrs, Volume $=18,186$ cf, Depth> 6.42"
Routed to Pond IB1 : Infiltration Basin \#1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

Summary for Subcatchment R6: To CB-6

Runoff $=3.22$ cfs @ 12.21 hrs, Volume $=13,650$ cf, Depth> 6.30"
Routed to Pond CB6 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

Summary for Subcatchment R7: To CB-5

Runoff $=\quad 4.17$ cfs @ 12.16 hrs, Volume= $15,775 \mathrm{cf}$, Depth> 5.93"

Routed to Pond CB5 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

Summary for Subcatchment R8: To RGB 2

Runoff $=3.12$ cfs @ 12.08 hrs, Volume= 10,107 cf, Depth> 7.04"
Routed to Pond HW2 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description Paved parking, HSG B		
	6,729	98 P			
	6,213	61 >	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	4,288	98 R	Roofs, HSG		
	17,230	85	Weighted Average		
	6,213		36.06\% Pervious Area		
	11,017		63.94\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment R9: To RGB 1

Runoff $=1.39$ cfs @ 12.08 hrs, Volume= $4,845 \mathrm{cf}$, Depth> 8.25"
Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

Area (sf)	CN	Description
4,963	98	Paved parking, HSG B
630	61	>75\% Grass cover, Good, HSG B
1,458	98	Roofs, HSG B

Summary for Subcatchment S3: To Swale

Runoff $=\quad 1.44$ cfs @ 12.09 hrs, Volume= $4,475 \mathrm{cf}$, Depth> 5.33"

Routed to Reach SW3:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Description Paved parking, HSG B		
	2,611	98 P			
	7,466	$61>$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	10,077	71	Weighted Average		
	7,466		74.09\% Pervious Area		
	2,611		25.91\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment S4: To Swale

Runoff $=0.20$ cfs @ 12.09 hrs, Volume= 611 cf , Depth> 5.45"
Routed to Pond CB7 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	rea (sf)	CN	Description		
	392	98	Paved parking, HSG B		
	954	61	>75\% Grass cover, Good, HSG B		
	1,346	72	Weighted Average		
	954		70.88\% Pervious Area		
	392		29.12\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{r} \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment S8: To Swale

Runoff $=\quad 0.80$ cfs @ 12.09 hrs, Volume $=\quad 2,487 \mathrm{cf}$, Depth> 5.70"

Routed to Reach SW8:
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-yr Rainfall=8.86"

	Area (sf)	CN D	Paved parking, HSG B		
	1,788	98 P			
	3,451	$61>$	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	5,239	74	Weighted Average		
	3,451		65.87\% Pervious Area		
	1,788		34.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Reach SW3:

Inflow Area $=\quad 20,294$ sf, 48.68% Impervious, Inflow Depth > 6.31" for 100-yr event
Inflow $=3.34$ cfs @ 12.09 hrs, Volume $=10,675 \mathrm{cf}$
Outflow = 2.88 cfs @ 12.13 hrs , Volume $=10,637 \mathrm{cf}$, Atten= 14%, Lag= 2.9 min
Routed to Pond CB7 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity= 1.76 fps , Min. Travel Time $=4.7 \mathrm{~min}$
Avg. Velocity $=0.58 \mathrm{fps}$, Avg. Travel Time= 14.4 min
Peak Storage= 821 cf @ 12.13 hrs
Average Depth at Peak Storage= 0.53 ', Surface Width= 4.68'
Bank-Full Depth= 1.50' Flow Area= 9.0 sf, Capacity= 28.59 cfs
1.50 ' x 1.50' deep channel, $\mathrm{n}=0.041$ Riprap, 2-inch

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length $=501.0^{\prime}$ Slope $=0.0100$ '/'
Inlet Invert= 256.12', Outlet Invert= 251.10'

Summary for Reach SW8:

[82] Warning: Early inflow requires earlier time span
Inflow Area $=\quad 12,290$ sf, 66.79% Impervious, Inflow Depth > 7.16" for 100-yr event
Inflow = 2.19 cfs @ 12.08 hrs , Volume= $\quad 7,331 \mathrm{cf}$
Outflow $=1.61 \mathrm{cfs}$ @ 12.16 hrs , Volume $=\quad 7,290 \mathrm{cf}$, Atten= 27%, Lag= 4.4 min
Routed to Pond HW2 :
Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Max. Velocity $=0.41 \mathrm{fps}$, Min. Travel Time $=9.4 \mathrm{~min}$
Avg. Velocity $=0.15 \mathrm{fps}$, Avg. Travel Time $=25.1 \mathrm{~min}$
Peak Storage= 904 cf @ 12.16 hrs
Average Depth at Peak Storage= 0.92' , Surface Width= 7.00'
Bank-Full Depth= 1.50 ' Flow Area 9.0 sf, Capacity $=4.93$ cfs
1.50 ' x 1.50 deep channel, $n=0.240$ Sheet flow over Dense Grass

Side Slope Z-value= 3.0 '/' Top Width= 10.50'
Length=232.0' Slope $=0.0102$ '/'
Inlet Invert= 255.37', Outlet Invert= 253.00'

Summary for Pond AD:

Inflow Area $=\quad 2,664$ sf, 0.00% Impervious, Inflow Depth $>4.11 "$ for 100 -yr event Inflow $=0.29$ cfs @ 12.09 hrs , Volume= 912 cf
Outflow = 0.29 cfs @ 12.09 hrs , Volume $=\quad 912 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 0.29 cfs @ 12.09 hrs, Volume= 912 cf Routed to Pond DMH1 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.30' @ 12.50 hrs
Flood Elev=250.75'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$248.60 '$	$8.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=26.4^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= 248.60' $/ 248.47 \prime \mathrm{~S}=0.0049 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.35 sf	

Primary OutFlow Max=0.30 cfs @ 12.09 hrs HW=249.26' TW=249.23' (Dynamic Tailwater)
\&1=Culvert (Outlet Controls 0.30 cfs @ 1.05 fps)

Summary for Pond CB1: CB\#1

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.32' @ 12.49 hrs
Flood Elev=251.50'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.00^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=93.3^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $249.00^{\prime} / 248.53^{\prime} \quad \mathrm{S}=0.0050 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=2.08 cfs @ 12.08 hrs HW=249.89' TW=249.19' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 2.08 cfs @ 3.73 fps)

Summary for Pond CB2:

 Routed to Pond SIS2 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=254.00' @ 12.27 hrs
Flood Elev= 254.02'

Device	Routing	Invert	Outlet Devices
\#1	Primary	251.20'	12.0" Round Culvert
			$\mathrm{L}=73.9$ ' RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 251.20' / 250.46' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 0.79 sf

Primary OutFlow Max=3.97 cfs @ 12.08 hrs HW=252.80' TW=250.99' (Dynamic Tailwater)
①=Culvert (Inlet Controls 3.97 cfs @ 5.05 fps)

Summary for Pond CB4:

 Routed to Pond DMH4 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.05' @ 12.33 hrs
Flood Elev= 250.69'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	247.83^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=14.5^{\prime}$ RCP, sq.cut end projecting, Ke=0.500	
		Inlet / Outlet Invert= $247.83^{\prime} / 247.55$ ' $\mathrm{S}=0.0193 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=2.72 cfs @ 12.08 hrs HW=248.88' TW=248.36' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 2.72 cfs @ 3.46 fps)

Summary for Pond CB5:

[58] Hint: Peaked 0.13' above defined flood level
 Routed to Pond DMH6 :

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=252.58' @ 12.15 hrs
Flood Elev=252.45'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	250.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		L=8.5' RCP, sq.cut end projecting, Ke= $=0.500$	
		Inlet / Outlet Invert $=250.30^{\prime} / 250.20^{\prime} \quad \mathrm{S}=0.0118 \mathrm{Cl} / \mathrm{Cl}^{\prime}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=4.17 cfs @ 12.16 hrs HW=252.56' TW=251.34' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 4.17 cfs @ 5.30 fps)

Summary for Pond CB6:

Inflow Area =	26,0	47.47\% Impervious	fflow Depth > 6.30" for 100-yr event
Inflow	3.22 cfs @	12.21 hrs , Volume=	13,650 cf
Outflow	3.22 cfs @	12.21 hrs , Volume=	13,650 cf, Atten= 0\%, Lag= 0.0 min
Primary	3.22 cfs @	12.21 hrs, Volume=	13,650 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.18' @ 12.21 hrs
Flood Elev= 250.82'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	248.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=6.3^{\prime}$ RCP, sq.cut end projecting, Ke= 0.500	
		Inlet / Outlet Invert= 248.30 ' $/ 248.26$ ' $\mathrm{S}=0.0063 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=3.21 cfs @ 12.21 hrs HW=250.18' TW=249.45' (Dynamic Tailwater)

Summary for Pond CB7:

Inflow	21,640 sf, 47.47\% Impervious	Inflow Depth > 6.24" for 100-yr event
Inflow	3.06 cfs @ 12.13 hrs, Volume=	11,248 cf
Outflow	3.06 cfs @ 12.13 hrs , Volume=	11,248 cf, Atten=0\%, Lag= 0.0 min
Primary	3.06 cfs @ 12.13 hrs , Volume=	11,248 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.13' @ 12.18 hrs
Flood Elev=253.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$248.00 '$	$18.0^{\prime \prime}$ Round Culvert
		$L=88.3^{\prime} R C P$, sq.cut end projecting, Ke= 0.500	
		Inlet / Outlet Invert= 248.00 ' / 247.50' $\mathrm{S}=0.0057 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=2.75 cfs @ 12.13 hrs HW=249.10' TW=248.79' (Dynamic Tailwater)
①=Culvert (Outlet Controls 2.75 cfs @ 2.77 fps)

Summary for Pond DMH1:

Inflow Area =	13,816 sf,	56.98\% Impervious,	Depth > 6.67" for 100-yr event
Inflow	2.36 cfs @	12.09 hrs , Volume=	7,680 cf
Outflow	2.36 cfs @	12.09 hrs , Volume=	7,680 cf, Atten= 0\%, Lag= 0.0 min
Primary	2.36 cfs @	12.09 hrs , Volume=	7,680 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.30' @ 12.50 hrs
Flood Elev= 252.50'

Device	Routing	Invert	Outlet Devices		
\#1	Primary	248.40'	12.0" Round MANIFOLD		
			$\mathrm{L}=6.0^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.40' $/ 248.35$ ' S=0.0083 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 0.79 sf		
\#2	Primary	248.28'	24.0" Round ISOLATOR		
			$\mathrm{L}=4.0$ ' RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 248.28' 248.25 ' S=0.0075 '/' Cc= 0.900		
			$\mathrm{n}=0.010$ PVC, smooth interior, Flow Area= 3.14 sf		
Primary OutFlow Max=2.37 cfs @ 12.09 hrs HW=249.19' TW=249.12' (Dynamic Tailwater) -1=MANIFOLD (Outlet Controls 0.79 cfs @ 1.64 fps) -2=ISOLATOR (Outlet Controls 1.58 cfs @ 1.67 fps)					

Summary for Pond DMH3:

Inflow	21,640 sf, 47.47\% Impervious	Inflow Depth > 6.24" for 100-yr event
Inflow	3.06 cfs @ 12.13 hrs, Volume=	11,248 cf
Outflow	3.06 cfs @ 12.13 hrs , Volume=	11,248 cf, Atten=0\%, Lag= 0.0 min
Primary	3.06 cfs @ 12.13 hrs , Volume=	11,248 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 249.02' @ 12.34 hrs
Flood Elev=251.98'

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :--- | :--- | :--- |
| $\# 1$ | Primary | 247.45^{\prime} | $18.0^{\prime \prime}$ Round Culvert |
| | | $L=68.2^{\prime}$ RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$ | |
| | | Inlet / Outlet Invert= $247.45^{\prime} / 247.10^{\prime} \quad \mathrm{S}=0.0051 \mathrm{I} / \mathrm{Cc}=0.900$ | |
| | | $\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 1.77 sf | |

Primary OutFlow Max=3.05 cfs @ 12.13 hrs HW=248.79' TW=248.59' (Dynamic Tailwater)
①=Culvert (Outlet Controls 3.05 cfs @ 2.42 fps)

Summary for Pond DMH4:

 Routed to Pond IB1 : Infiltration Basin \#1

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=248.98' @ 12.36 hrs
Flood Elev=251.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	246.60'	24.0" Round Culvert
			$\mathrm{L}=34.6$ ' RCP, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 246.60' / 246.43' S=0.0049 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=5.60 cfs @ 12.11 hrs HW=248.47' TW=248.32' (Dynamic Tailwater)
①=Culvert (Outlet Controls 5.60 cfs @ 2.37 fps)

Summary for Pond DMH5:

Inflow	29,520	65.13\% Impervious	Inflow Depth > 7.07" for 100-yr event
Inflow	4.50 cfs @	12.10 hrs , Volume=	17,397 cf
Outflow	4.50 cfs @	12.10 hrs , Volume=	$17,397 \mathrm{cf}$, Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	4.50 cfs @	12.10 hrs , Volume=	17,397 cf

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=252.85' @ 12.10 hrs
Flood Elev= 254.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	251.65^{\prime}	$15.0^{\prime \prime}$ Round Culvert
		$L=116.8^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $251.655^{\prime} / 250.46^{\prime} \quad \mathrm{S}=0.0102 \mathrm{Cl} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.23 \mathrm{sf}$	

Primary OutFlow Max=4.49 cfs @ 12.10 hrs HW=252.84' TW=251.36' (Dynamic Tailwater)
①=Culvert (Inlet Controls 4.49 cfs @ 3.72 fps)

Summary for Pond DMH6:
 Routed to Pond DMH7:

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=251.41' @ 12.13 hrs
Flood Elev= 252.93'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	249.71^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$L=160.8^{\prime} R C P$, sq.cut end projecting, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $249.71^{\prime} / 248.10^{\prime} \mathrm{S}=0.0100 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=8.28 cfs @ 12.13 hrs HW=251.41' TW=249.35' (Dynamic Tailwater)
—1 $^{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 8.28$ cfs @ 4.69 fps)

Summary for Pond DMH7:

Inflow Area = 87,437 sf, 50.61\% Impervious, Inflow Depth > 6.43" for 100-yr event Inflow $=11.07$ cfs @ 12.15 hrs , Volume= $46,822 \mathrm{cf}$
Outflow = 11.07 cfs @ 12.15 hrs , Volume= $46,822 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=11.07$ cfs @ 12.15 hrs, Volume $=\quad 46,822 \mathrm{cf}$ Routed to Pond IB1 : Infiltration Basin \#1

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=249.46' @ 12.21 hrs
Flood Elev= 251.25'

Device	Routing	Invert	Outlet Devices
\#1	Primary	247.60'	24.0" Round Culvert
			$\mathrm{L}=111.5^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 247.60' / 246.65' S= 0.0085 '/' Cc= 0.900
			$\mathrm{n}=0.011$ Concrete pipe, straight \& clean, Flow Area= 3.14 sf

Primary OutFlow Max=11.05 cfs @ 12.15 hrs HW=249.40' TW=248.54' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 11.05 cfs @ 4.90 fps)

Summary for Pond EX: Existing Abutter Depression

Inflow Area =	26,605 sf,	5.66\% Impervious,	Inflow Depth > 4.35" for 100-yr event
Inflow	2.57 cfs @	12.17 hrs , Volume=	9,635 cf
Outflow	2.53 cfs @	12.19 hrs , Volume=	9,526 cf, Atten= 1\%, Lag= 1.2 min
Discarded	0.12 cfs @	12.19 hrs , Volume=	3,825 cf
Primary	2.41 cfs @	12.19 hrs , Volume=	$5,701 \mathrm{cf}$
Routed to	3 : Abutter	Depression	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.38' @ 12.19 hrs Surf.Area= 2,039 sf Storage= 546 cf
Plug-Flow detention time $=22.5 \mathrm{~min}$ calculated for 9,517 cf (99% of inflow)
Center-of-Mass det. time $=16.0 \mathrm{~min}(854.5-838.5)$

Discarded OutFlow Max=0.12 cfs @ 12.19 hrs HW=250.38' (Free Discharge)
—1=Exfiltration (Controls 0.12 cfs)
Primary OutFlow Max=2.40 cfs @ 12.19 hrs HW=250.38' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 2.40 cfs @ 0.95 fps)

Summary for Pond HW2:

[58] Hint: Peaked 0.20' above defined flood level
[62] Hint: Exceeded Reach SW8 OUTLET depth by 0.34' @ 12.08 hrs
Inflow Area = 29,520 sf, 65.13\% Impervious, Inflow Depth > 7.07" for 100-yr event
Inflow $=\quad 4.50$ cfs @ 12.10 hrs , Volume $=17,397 \mathrm{cf}$
Outflow = 4.50 cfs @ 12.10 hrs , Volume= $\quad 17,397 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=\quad 4.50$ cfs @ 12.10 hrs , Volume $=\quad 17,397 \mathrm{cf}$
Routed to Pond DMH5 :
Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=254.20' @ 12.10 hrs
Flood Elev=254.00'
Device Routing Invert Outlet Devices
\#1 Primary $\quad 253.00^{\prime} \quad 15.0^{\prime \prime}$ Round Culvert
$\mathrm{L}=14.6^{\prime} \mathrm{RCP}$, sq.cut end projecting, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=253.00' / 251.75' S=0.0856 '/l' Cc=0.900
$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.23 sf
Primary OutFlow Max=4.49 cfs @ 12.10 hrs HW=254.19' TW=252.84' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls 4.49 cfs @ 3.72 fps)

Summary for Pond IB1: Infiltration Basin \#1

[80] Warning: Exceeded Pond DMH4 by 0.31' @ 2.00 hrs (0.76 cfs 661 cf)
 Routed to Link AP1 : To Wetlands

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 248.96' @ 12.37 hrs Surf.Area= 11,648 sf Storage= 19,697 cf
Plug-Flow detention time $=21.1$ min calculated for 91,736 cf (100% of inflow)
Center-of-Mass det. time= 21.0 min (823.6-802.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	247.00^{\prime}	$32,758 \mathrm{cf}$	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
247.00	8,532	373.0	0	0	8,532
248.00	10,075	398.2	9,293	9,293	10,126
249.00	11,718	423.3	10,886	20,179	11,817
250.00	13,461	448.4	12,579	32,758	13,612

Device	Routing	Invert	Outlet Devices
\#1	Discarded	247.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 244.93' Phase-In= 0.01'
\#2	Primary	247.00'	18.0" Round Culvert L=62.2' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=247.00' 246.00 ' $=0.0161$ '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area 1.77 sf
\#3	Device 2	247.00'	6.0" Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#4	Device 2	248.20'	2.0" x 2.0" Horiz. Orifice/Grate X 8.00 columns
			X 8 rows C= 0.600 in 24.0 " x 24.0" Grate (44% open area)
			Limited to weir flow at low heads
\#5	Secondary	249.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=3.98 cfs @ 12.37 hrs HW=248.96' (Free Discharge)
—1=Exfiltration (Controls 3.98 cfs)
Primary OutFlow Max=8.69 cfs @ 12.37 hrs HW=248.96' TW=0.00' (Dynamic Tailwater)
$\sum_{2=C u l v e r t ~(P a s s e s ~}^{8.69}$ cfs of 9.35 cfs potential flow)

- $3=$ Orifice/Grate (Orifice Controls 1.24 cfs @ 6.29 fps)

4=Orifice/Grate (Orifice Controls 7.45 cfs @ 4.19 fps)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.00' TW=0.00' (Dynamic Tailwater)
$4_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \text { cfs) }}$

Summary for Pond SIS1: Stormtech

Routing by Dyn-Stor-Ind method, Time Span= 2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev=250.30' @ 12.50 hrs Surf.Area= 1,242 sf Storage $=2,134 \mathrm{cf}$
Plug-Flow detention time $=29.8$ min calculated for $7,673 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=29.8 \mathrm{~min}(817.7-787.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	247.75'	1,151 cf	20.50'W x 60.58'L x 3.50'H Field A
			4,346 cf Overall - 1,470 cf Embedded $=2,876$ cf $\times 40.0 \%$ Voids
\#2A	$248.25{ }^{\prime}$	1,470 cf	ADS_StormTech SC-740 +Cap $\times 32$ Inside \#1
			Effective Size $=44.6{ }^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ " $\mathrm{W} \times 30.0$ "H x 7.56'L with 0.44 ' Overlap 32 Chambers in 4 Rows
\#3	248.00^{\prime}	35 cf	4.00'D x 2.75'H Vertical Cone/Cylinder-Impervious
2,655 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Ou	et Devices
\#1	Discarded	247.75' 8.27	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			ductivity to Groundwater Elevation = 245.51' Phase-In= 0.01'
\#2	Secondary	250.60' $\begin{array}{ll}\text { 2.0 } \\ & \text { X } \\ & \text { Lir }\end{array}$	x 2.0" Horiz. Orifice/Grate X 7.00 columns
			rows C= 0.600 in 24.0 " x 24.0 " Grate (34% open area)
			ed to weir flow at low heads

Discarded OutFlow Max=0.51 cfs @ 12.50 hrs HW=250.30' (Free Discharge)
—1=Exfiltration (Controls 0.51 cfs)
Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=247.75' TW=0.00' (Dynamic Tailwater)
—2=Orifice/Grate (Controls 0.00 cfs)

Pond SIS1: Stormtech - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81 ' Cap Length $\times 2=58.58$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=60.58^{\prime}$ Base Length
4 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0$ " Side Stone $\times 2=20.50^{\prime}$ Base Width
6.0" Stone Base $+30.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.50$ Field Height

32 Chambers $\times 45.9$ cf $=1,470.1$ cf Chamber Storage
4,346.4 cf Field - 1,470.1 cf Chambers $=2,876.3$ cf Stone $\times 40.0 \%$ Voids $=1,150.5$ cf Stone Storage
Chamber Storage + Stone Storage $=2,620.6 \mathrm{cf}=0.060 \mathrm{af}$
Overall Storage Efficiency = 60.3\%
Overall System Size $=60.58^{\prime} \times 20.50^{\prime} \times 3.50^{\prime}$
32 Chambers
161.0 cy Field
106.5 cy Stone

Summary for Pond SIS2:

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=4)

Inflow Area =	24,35	65.70\% Impervious,	Depth > 7	06" for 100-yr event
Inflow	4.40 cfs @	12.08 hrs , Volume=	14,323 cf	
Outflow	2.49 cfs @	12.26 hrs , Volume=	14,322 cf,	Atten= 43\%, Lag= 10.6 min
Discarded	1.11 cfs @	12.26 hrs , Volume=	13,952 cf	
Primary	1.38 cfs @	12.26 hrs, Volume=	371 cf	

Routing by Dyn-Stor-Ind method, Time Span=2.00-24.00 hrs, dt= $0.02 \mathrm{hrs} / 3$
Peak Elev= 253.64' @ 12.26 hrs Surf.Area= 1,748 sf Storage= 3,706 cf
Plug-Flow detention time $=31.1$ min calculated for $14,309 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= 31.1 min (815.3-784.3)

Volume	Invert	Avail.Storage	Storage Description
\#1A	249.00'	1,603 cf	44.25 'W x 39.22'L x 3.50'H Field A
			6,074 cf Overall - 2,067 cf Embedded $=4,006$ cf $\times 40.0 \%$ Voids
\#2A	249.50'	2,067 cf	ADS_StormTech SC-740 +Cap $\times 45$ Inside \#1
			Effective Size $=44.6$ " $\mathrm{W} \times 30.0$ " $\mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
			Overall Size $=51.0$ "W $\times 30.0$ 'H $\times 7.56^{\prime} \mathrm{L}$ with $0.44{ }^{\text {' O }}$ Overlap
			45 Chambers in 9 Rows
\#3	250.80^{\prime}	38 cf	4.00 'D x 3.00'H Vertical Cone/Cylinder
		3,708 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	249.00'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Conductivity to Groundwater Elevation =247.00' Phase-In= 0.01'
\#2	Primary	253.50'	2.0" x 2.0" Horiz. Orifice/Grate X 6.00 columns X 6 rows C= 0.600 in 24.0" x 24.0" Grate (25% open area) Limited to weir flow at low heads

Discarded OutFlow Max=1.11 cfs @ 12.26 hrs HW=253.64' (Free Discharge)
—1=Exfiltration (Controls 1.11 cfs)
Primary OutFlow Max=1.28 cfs @ 12.26 hrs HW=253.63' TW=248.87' (Dynamic Tailwater)
L2=Orifice/Grate (Weir Controls 1.28 cfs @ 1.20 fps)

Pond SIS2: - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= 44.6 "W $\times 30.0$ "H $=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

5 Chambers/Row x 7.12' Long +0.81' Cap Length x $2=37.22^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=39.22^{\prime}$ Base Length
9 Rows x $51.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone $\times 2=44.25^{\prime}$ Base Width
6.0" Stone Base + 30.0" Chamber Height +6.0 " Stone Cover $=3.50$ Field Height

45 Chambers $\times 45.9 \mathrm{cf}=2,067.3 \mathrm{cf}$ Chamber Storage
6,073.7 cf Field - 2,067.3 cf Chambers $=4,006.4$ cf Stone $\times 40.0 \%$ Voids $=1,602.6$ cf Stone Storage
Chamber Storage + Stone Storage $=3,669.9 \mathrm{cf}=0.084$ af
Overall Storage Efficiency $=60.4 \%$
Overall System Size $=39.22^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
45 Chambers
225.0 cy Field
148.4 cy Stone

Summary for Link AP1: To Wetlands

Inflow Area $=$	$236,171 \mathrm{sf}$,	42.45%	Impervious,
Inflow	$=$	10.34 cfs @	12.32 hrs , Volume $=$
Primary	$=$	$10.34 \mathrm{cfs} @$	12.32 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP2: To Offsite

Inflow Area =	36,823 sf,	pervious,	(Depth > 4.35" for 100-yr event
flow	4.30 cfs @	12.09 hrs , Volume=	13,352 cf
Primary	4.30 cfs @	12.09 hrs , Volume=	13,352 cf, Atten= 0\%, Lag= 0.0 m

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Summary for Link AP3: Abutter Depression

flow Area =	26,605 sf	5.66\% Impervious,	Depth $=2.57$ " for 100-yr event
Inflow	2.41 cfs @	12.19 hrs , Volume=	5,701 cf
Primary	2.41 cfs @	12.19 hrs , Volume=	$5,701 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 m

Primary outflow $=$ Inflow, Time Span= 2.00-24.00 hrs, dt= 0.02 hrs

Stage-Area-Storage for Pond AD:

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
248.60	0	249.66	0	250.72	0
248.62	0	249.68	0	250.74	0
248.64	0	249.70	0		
248.66	0	249.72	0		
248.68	0	249.74	0		
248.70	0	249.76	0		
248.72	0	249.78	0		
248.74	0	249.80	0		
248.76	0	249.82	0		
248.78	0	249.84	0		
248.80	0	249.86	0		
248.82	0	249.88	0		
248.84	0	249.90	0		
248.86	0	249.92	0		
248.88	0	249.94	0		
248.90	0	249.96	0		
248.92	0	249.98	0		
248.94	0	250.00	0		
248.96	0	250.02	0		
248.98	0	250.04	0		
249.00	0	250.06	0		
249.02	0	250.08	0		
249.04	0	250.10	0		
249.06	0	250.12	0		
249.08	0	250.14	0		
249.10	0	250.16	0		
249.12	0	250.18	0		
249.14	0	250.20	0		
249.16	0	250.22	0		
249.18	0	250.24	0		
249.20	0	250.26	0		
249.22	0	250.28	0		
249.24	0	250.30	0		
249.26	0	250.32	0		
249.28	0	250.34	0		
249.30	0	250.36	0		
249.32	0	250.38	0		
249.34	0	250.40	0		
249.36	0	250.42	0		
249.38	0	250.44	0		
249.40	0	250.46	0		
249.42	0	250.48	0		
249.44	0	250.50	0		
249.46	0	250.52	0		
249.48	0	250.54	0		
249.50	0	250.56	0		
249.52	0	250.58	0		
249.54	0	250.60	0		
249.56	0	250.62	0		
249.58	0	250.64	0		
249.60	0	250.66	0		
249.62	0	250.68	0		
249.64	0	250.70	0		

Stage-Area-Storage for Pond CB1: CB\#1

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
249.00	0	250.06	0	251.12	0
249.02	0	250.08	0	251.14	0
249.04	0	250.10	0	251.16	0
249.06	0	250.12	0	251.18	0
249.08	0	250.14	0	251.20	0
249.10	0	250.16	0	251.22	0
249.12	0	250.18	0	251.24	0
249.14	0	250.20	0	251.26	0
249.16	0	250.22	0	251.28	0
249.18	0	250.24	0	251.30	0
249.20	0	250.26	0	251.32	0
249.22	0	250.28	0	251.34	0
249.24	0	250.30	0	251.36	0
249.26	0	250.32	0	251.38	0
249.28	0	250.34	0	251.40	0
249.30	0	250.36	0	251.42	0
249.32	0	250.38	0	251.44	0
249.34	0	250.40	0	251.46	0
249.36	0	250.42	0	251.48	0
249.38	0	250.44	0	251.50	0
249.40	0	250.46	0		
249.42	0	250.48	0		
249.44	0	250.50	0		
249.46	0	250.52	0		
249.48	0	250.54	0		
249.50	0	250.56	0		
249.52	0	250.58	0		
249.54	0	250.60	0		
249.56	0	250.62	0		
249.58	0	250.64	0		
249.60	0	250.66	0		
249.62	0	250.68	0		
249.64	0	250.70	0		
249.66	0	250.72	0		
249.68	0	250.74	0		
249.70	0	250.76	0		
249.72	0	250.78	0		
249.74	0	250.80	0		
249.76	0	250.82	0		
249.78	0	250.84	0		
249.80	0	250.86	0		
249.82	0	250.88	0		
249.84	0	250.90	0		
249.86	0	250.92	0		
249.88	0	250.94	0		
249.90	0	250.96	0		
249.92	0	250.98	0		
249.94	0	251.00	0		
249.96	0	251.02	0		
249.98	0	251.04	0		
250.00	0	251.06	0		
250.02	0	251.08	0		
250.04	0	251.10	0		

Stage-Area-Storage for Pond CB2:

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
251.20	0	252.26	0	253.32	0
251.22	0	252.28	0	253.34	0
251.24	0	252.30	0	253.36	0
251.26	0	252.32	0	253.38	0
251.28	0	252.34	0	253.40	0
251.30	0	252.36	0	253.42	0
251.32	0	252.38	0	253.44	0
251.34	0	252.40	0	253.46	0
251.36	0	252.42	0	253.48	0
251.38	0	252.44	0	253.50	0
251.40	0	252.46	0	253.52	0
251.42	0	252.48	0	253.54	0
251.44	0	252.50	0	253.56	0
251.46	0	252.52	0	253.58	0
251.48	0	252.54	0	253.60	0
251.50	0	252.56	0	253.62	0
251.52	0	252.58	0	253.64	0
251.54	0	252.60	0	253.66	0
251.56	0	252.62	0	253.68	0
251.58	0	252.64	0	253.70	0
251.60	0	252.66	0	253.72	0
251.62	0	252.68	0	253.74	0
251.64	0	252.70	0	253.76	0
251.66	0	252.72	0	253.78	0
251.68	0	252.74	0	253.80	0
251.70	0	252.76	0	253.82	0
251.72	0	252.78	0	253.84	0
251.74	0	252.80	0	253.86	0
251.76	0	252.82	0	253.88	0
251.78	0	252.84	0	253.90	0
251.80	0	252.86	0	253.92	0
251.82	0	252.88	0	253.94	0
251.84	0	252.90	0	253.96	0
251.86	0	252.92	0	253.98	0
251.88	0	252.94	0	254.00	0
251.90	0	252.96	0	254.02	0
251.92	0	252.98	0		
251.94	0	253.00	0		
251.96	0	253.02	0		
251.98	0	253.04	0		
252.00	0	253.06	0		
252.02	0	253.08	0		
252.04	0	253.10	0		
252.06	0	253.12	0		
252.08	0	253.14	0		
252.10	0	253.16	0		
252.12	0	253.18	0		
252.14	0	253.20	0		
252.16	0	253.22	0		
252.18	0	253.24	0		
252.20	0	253.26	0		
252.22	0	253.28	0		
252.24	0	253.30	0		

Stage-Area-Storage for Pond CB4:

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
247.83	0	248.89	0	249.95	0
247.85	0	248.91	0	249.97	0
247.87	0	248.93	0	249.99	0
247.89	0	248.95	0	250.01	0
247.91	0	248.97	0	250.03	0
247.93	0	248.99	0	250.05	0
247.95	0	249.01	0	250.07	0
247.97	0	249.03	0	250.09	0
247.99	0	249.05	0	250.11	0
248.01	0	249.07	0	250.13	0
248.03	0	249.09	0	250.15	0
248.05	0	249.11	0	250.17	0
248.07	0	249.13	0	250.19	0
248.09	0	249.15	0	250.21	0
248.11	0	249.17	0	250.23	0
248.13	0	249.19	0	250.25	0
248.15	0	249.21	0	250.27	0
248.17	0	249.23	0	250.29	0
248.19	0	249.25	0	250.31	0
248.21	0	249.27	0	250.33	0
248.23	0	249.29	0	250.35	0
248.25	0	249.31	0	250.37	0
248.27	0	249.33	0	250.39	0
248.29	0	249.35	0	250.41	0
248.31	0	249.37	0	250.43	0
248.33	0	249.39	0	250.45	0
248.35	0	249.41	0	250.47	0
248.37	0	249.43	0	250.49	0
248.39	0	249.45	0	250.51	0
248.41	0	249.47	0	250.53	0
248.43	0	249.49	0	250.55	0
248.45	0	249.51	0	250.57	0
248.47	0	249.53	0	250.59	0
248.49	0	249.55	0	250.61	0
248.51	0	249.57	0	250.63	0
248.53	0	249.59	0	250.65	0
248.55	0	249.61	0	250.67	0
248.57	0	249.63	0	250.69	0
248.59	0	249.65	0		
248.61	0	249.67	0		
248.63	0	249.69	0		
248.65	0	249.71	0		
248.67	0	249.73	0		
248.69	0	249.75	0		
248.71	0	249.77	0		
248.73	0	249.79	0		
248.75	0	249.81	0		
248.77	0	249.83	0		
248.79	0	249.85	0		
248.81	0	249.87	0		
248.83	0	249.89	0		
248.85	0	249.91	0		
248.87	0	249.93	0		

Stage-Area-Storage for Pond CB5:

Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r}\begin{array}{r}\text { Elevation } \\ \text { (feet) }\end{array} \\ \hline\end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
250.30	0	251.36	0	252.42	0
250.32	0	251.38	0	252.44	0
250.34	0	251.40	0		
250.36	0	251.42	0		
250.38	0	251.44	0		
250.40	0	251.46	0		
250.42	0	251.48	0		
250.44	0	251.50	0		
250.46	0	251.52	0		
250.48	0	251.54	0		
250.50	0	251.56	0		
250.52	0	251.58	0		
250.54	0	251.60	0		
250.56	0	251.62	0		
250.58	0	251.64	0		
250.60	0	251.66	0		
250.62	0	251.68	0		
250.64	0	251.70	0		
250.66	0	251.72	0		
250.68	0	251.74	0		
250.70	0	251.76	0		
250.72	0	251.78	0		
250.74	0	251.80	0		
250.76	0	251.82	0		
250.78	0	251.84	0		
250.80	0	251.86	0		
250.82	0	251.88	0		
250.84	0	251.90	0		
250.86	0	251.92	0		
250.88	0	251.94	0		
250.90	0	251.96	0		
250.92	0	251.98	0		
250.94	0	252.00	0		
250.96	0	252.02	0		
250.98	0	252.04	0		
251.00	0	252.06	0		
251.02	0	252.08	0		
251.04	0	252.10	0		
251.06	0	252.12	0		
251.08	0	252.14	0		
251.10	0	252.16	0		
251.12	0	252.18	0		
251.14	0	252.20	0		
251.16	0	252.22	0		
251.18	0	252.24	0		
251.20	0	252.26	0		
251.22	0	252.28	0		
251.24	0	252.30	0		
251.26	0	252.32	0		
251.28	0	252.34	0		
251.30	0	252.36	0		
251.32	0	252.38	0		
251.34	0	252.40	0		

Stage-Area-Storage for Pond CB6:

$\begin{array}{r} \text { Elevation } \\ \quad(\text { feet }) \\ \hline \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)
248.30	0	249.36	0	250.42	0
248.32	0	249.38	0	250.44	0
248.34	0	249.40	0	250.46	0
248.36	0	249.42	0	250.48	0
248.38	0	249.44	0	250.50	0
248.40	0	249.46	0	250.52	0
248.42	0	249.48	0	250.54	0
248.44	0	249.50	0	250.56	0
248.46	0	249.52	0	250.58	0
248.48	0	249.54	0	250.60	0
248.50	0	249.56	0	250.62	0
248.52	0	249.58	0	250.64	0
248.54	0	249.60	0	250.66	0
248.56	0	249.62	0	250.68	0
248.58	0	249.64	0	250.70	0
248.60	0	249.66	0	250.72	0
248.62	0	249.68	0	250.74	0
248.64	0	249.70	0	250.76	0
248.66	0	249.72	0	250.78	0
248.68	0	249.74	0	250.80	0
248.70	0	249.76	0	250.82	0
248.72	0	249.78	0		
248.74	0	249.80	0		
248.76	0	249.82	0		
248.78	0	249.84	0		
248.80	0	249.86	0		
248.82	0	249.88	0		
248.84	0	249.90	0		
248.86	0	249.92	0		
248.88	0	249.94	0		
248.90	0	249.96	0		
248.92	0	249.98	0		
248.94	0	250.00	0		
248.96	0	250.02	0		
248.98	0	250.04	0		
249.00	0	250.06	0		
249.02	0	250.08	0		
249.04	0	250.10	0		
249.06	0	250.12	0		
249.08	0	250.14	0		
249.10	0	250.16	0		
249.12	0	250.18	0		
249.14	0	250.20	0		
249.16	0	250.22	0		
249.18	0	250.24	0		
249.20	0	250.26	0		
249.22	0	250.28	0		
249.24	0	250.30	0		
249.26	0	250.32	0		
249.28	0	250.34	0		
249.30	0	250.36	0		
249.32	0	250.38	0		
249.34	0	250.40	0		

Stage-Area-Storage for Pond CB7:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0	251.05	0
248.45	0	251.10	0
248.50	0	251.15	0
248.55	0	251.20	0
248.60	0	251.25	0
24.65	0	251.30	0
248.70	0	251.35	0
248.75	0	251.40	0
248.80	0	251.45	0
24.85	0	251.50	0
248.90	0	251.55	0
248.95	0	251.60	0
249.00	0	251.65	0
249.05	0	251.70	0
249.10	0	251.75	0
249.15	0	251.80	0
249.20	0	251.85	0
249.25	0	251.90	0
249.30	0	251.95	0
249.35	0	252.00	0
249.40	0	252.05	0
249.45	0	252.10	0
249.50	0	252.15	0
249.55	0	252.20	0
249.60	0	252.25	0
249.65	0	252.30	0
249.70	0	252.35	0
249.75	0	252.40	0
249.80	0	252.45	0
249.85	0	252.50	0
249.90	0	252.55	0
249.95	0	252.60	0
250.00	0	252.65	0
250.05	0	252.70	0
250.10	0	252.75	0
250.15	0	0	0
250.20	0		0
250.25	0	252.85	0
250.30	0	252.90	0
250.35	0		0
250.40	0		0
250.45	0		0
250.50	0		0
250.55	0		0
250.60			0
	0		0

Stage-Area-Storage for Pond DMH1:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
248.28	0	250.93	0
248.33	0	250.98	0
248.38	0	251.03	0
248.43	0	251.08	0
248.48	0	251.13	0
248.53	0	251.18	0
248.58	0	251.23	0
248.63	0	251.28	0
248.68	0	251.33	0
248.73	0	251.38	0
248.78	0	251.43	0
248.83	0	251.48	0
248.88	0	251.53	0
248.93	0	251.58	0
248.98	0	251.63	0
249.03	0	251.68	0
249.08	0	251.73	0
249.13	0	251.78	0
249.18	0	251.83	0
249.23	0	251.88	0
249.28	0	251.93	0
249.33	0	251.98	0
249.38	0	252.03	0
249.43	0	252.08	0
249.48	0	252.13	0
249.53	0	252.18	0
249.58	0	252.23	0
249.63	0	252.28	0
249.68	0	252.33	0
249.73	0	252.38	0
249.78	0	252.43	0
249.83	0	252.48	0
249.88	0		
249.93	0		
249.98	0		
250.03	0		
250.08	0		
250.13	0		
250.18	0		
250.23	0		
250.28	0		
250.33	0		
250.38	0		
250.43	0		
250.48	0		
250.53	0		
250.58	0		
250.63	0		
250.68	0		
250.73	0		
250.78	0		
250.83	0		
250.88	0		

Stage-Area-Storage for Pond DMH3:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
247.45	0	250.10	0
247.50	0	250.15	0
247.55	0	250.20	0
247.60	0	250.25	0
247.65	0	250.30	0
247.70	0	250.35	0
247.75	0	250.40	0
247.80	0	250.45	0
247.85	0	250.50	0
247.90	0	250.55	0
247.95	0	250.60	0
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0	251.05	0
248.45	0	251.10	0
248.50	0	251.15	0
248.55	0	251.20	0
248.60	0	251.25	0
248.65	0	251.30	0
248.70	0	251.35	0
248.75	0	251.40	0
248.80	0	251.45	0
248.85	0	251.50	0
248.90	0	251.55	0
248.95	0	251.60	0
249.00	0	251.65	0
249.05	0	251.70	0
249.10	0	251.75	0
249.15	0	251.80	0
249.20	0	251.85	0
249.25	0	251.90	0
249.30	0	251.95	0
249.35	0		
249.40	0		
249.45	0		
249.50	0		
249.55	0		
249.60	0		
249.65	0		
249.70	0		
249.75	0		
249.80	0		
249.85	0		
249.90	0		
249.95	0		
250.00	0		
250.05	0		

Stage-Area-Storage for Pond DMH4:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
246.60	0	249.25	0
246.65	0	249.30	0
246.70	0	249.35	0
246.75	0	249.40	0
246.80	0	249.45	0
246.85	0	249.50	0
246.90	0	249.55	0
246.95	0	249.60	0
247.00	0	249.65	0
247.05	0	249.70	0
247.10	0	249.75	0
247.15	0	249.80	0
247.20	0	249.85	0
247.25	0	249.90	0
247.30	0	249.95	0
247.35	0	250.00	0
247.40	0	250.05	0
247.45	0	250.10	0
247.50	0	250.15	0
247.55	0	250.20	0
247.60	0	250.25	0
247.65	0	250.30	0
247.70	0	250.35	0
247.75	0	250.40	0
247.80	0	250.45	0
247.85	0	250.50	0
247.90	0	250.55	0
247.95	0	250.60	0
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0		
248.45	0		
248.50	0		
248.55	0		
248.60	0		
248.65	0		
248.70	0		
248.75	0		
248.80	0		
248.85	0		
248.90	0		
248.95	0		
249.00	0		
249.05	0		
249.10	0		
249.15	0		
249.20	0		

Stage-Area-Storage for Pond DMH5:

Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
251.65	0	252.71	0	253.77	0
251.67	0	252.73	0	253.79	0
251.69	0	252.75	0	253.81	0
251.71	0	252.77	0	253.83	0
251.73	0	252.79	0	253.85	0
251.75	0	252.81	0	253.87	0
251.77	0	252.83	0	253.89	0
251.79	0	252.85	0	253.91	0
251.81	0	252.87	0	253.93	0
251.83	0	252.89	0	253.95	0
251.85	0	252.91	0	253.97	0
251.87	0	252.93	0	253.99	0
251.89	0	252.95	0		
251.91	0	252.97	0		
251.93	0	252.99	0		
251.95	0	253.01	0		
251.97	0	253.03	0		
251.99	0	253.05	0		
252.01	0	253.07	0		
252.03	0	253.09	0		
252.05	0	253.11	0		
252.07	0	253.13	0		
252.09	0	253.15	0		
252.11	0	253.17	0		
252.13	0	253.19	0		
252.15	0	253.21	0		
252.17	0	253.23	0		
252.19	0	253.25	0		
252.21	0	253.27	0		
252.23	0	253.29	0		
252.25	0	253.31	0		
252.27	0	253.33	0		
252.29	0	253.35	0		
252.31	0	253.37	0		
252.33	0	253.39	0		
252.35	0	253.41	0		
252.37	0	253.43	0		
252.39	0	253.45	0		
252.41	0	253.47	0		
252.43	0	253.49	0		
252.45	0	253.51	0		
252.47	0	253.53	0		
252.49	0	253.55	0		
252.51	0	253.57	0		
252.53	0	253.59	0		
252.55	0	253.61	0		
252.57	0	253.63	0		
252.59	0	253.65	0		
252.61	0	253.67	0		
252.63	0	253.69	0		
252.65	0	253.71	0		
252.67	0	253.73	0		
252.69	0	253.75	0		

Stage-Area-Storage for Pond DMH6:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
249.71	0	252.36	0
249.76	0	252.41	0
249.81	0	252.46	0
249.86	0	252.51	0
249.91	0	252.56	0
249.96	0	252.61	0
250.01	0	252.66	0
250.06	0	252.71	0
250.11	0	252.76	0
250.16	0	252.81	0
250.21	0	252.86	0
250.26	0	252.91	0
250.31	0		
250.36	0		
250.41	0		
250.46	0		
250.51	0		
250.56	0		
250.61	0		
250.66	0		
250.71	0		
250.76	0		
250.81	0		
250.86	0		
250.91	0		
250.96	0		
251.01	0		
251.06	0		
251.11	0		
251.16	0		
251.21	0		
251.26	0		
251.31	0		
251.36	0		
251.41	0		
251.46	0		
251.51	0		
251.56	0		
251.61	0		
251.66	0		
251.71	0		
251.76	0		
251.81	0		
251.86	0		
251.91	0		
251.96	0		
252.01	0		
252.06	0		
252.11	0		
252.16	0		
252.21	02.26	0	
252.31	0		
	0		

Stage-Area-Storage for Pond DMH7:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
247.60	0	250.25	0
247.65	0	250.30	0
247.70	0	250.35	0
247.75	0	250.40	0
247.80	0	250.45	0
247.85	0	250.50	0
247.90	0	250.55	0
247.95	0	250.60	0
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0	251.05	0
248.45	0	251.10	0
248.50	0	251.15	0
248.55	0	251.20	0
248.60	0	251.25	0
248.65	0		
248.70	0		
248.75	0		
248.80	0		
248.85	0		
248.90	0		
248.95	0		
249.00	0		
249.05	0		
249.10	0		
249.15	0		
249.20	0		
249.25	0		
249.30	0		
249.35	0		
249.40	0		
249.45	0		
249.50	0		
249.55	0		
249.60	0		
249.65	0		
249.70	0		
249.75	0		
249.80	0		
249.85	0		
249.90	0		
249.95	0		
250.00	0		
250.05	0		
250.10	0		
250.15	0		
250.20	0		
	0		

Stage-Area-Storage for Pond EX: Existing Abutter Depression

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{aligned} & \text { Surface } \\ & (\mathrm{sq}-\mathrm{ft}) \end{aligned}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)
249.80	164	0	250.33	1,835	456
249.81	184	2	250.34	1,879	475
249.82	204	4	250.35	1,923	494
249.83	224	6	250.36	1,967	513
249.84	244	8	250.37	2,012	533
249.85	264	11	250.38	2,056	553
249.86	283	13	250.39	2,100	574
249.87	303	16	250.40	2,144	595
249.88	323	19	250.41	2,193	617
249.89	343	23	250.42	2,242	639
249.90	363	26	250.43	2,291	662
249.91	383	30	250.44	2,341	685
249.92	403	34	250.45	2,390	709
249.93	423	38	250.46	2,439	733
249.94	443	42	250.47	2,488	758
249.95	463	47	250.48	2,537	783
249.96	482	52	250.49	2,586	808
249.97	502	57	250.50	2,636	834
249.98	522	62	250.51	2,685	861
249.99	542	67	250.52	2,734	888
250.00	562	73	250.53	2,783	916
250.01	597	78	250.54	2,832	944
250.02	632	85	250.55	2,881	972
250.03	667	91	250.56	2,930	1,001
250.04	702	98	250.57	2,980	1,031
250.05	737	105	250.58	3,029	1,061
250.06	772	113	250.59	3,078	1,091
250.07	807	121	250.60	3,127	1,122
250.08	842	129			
250.09	877	137			
250.10	912	146			
250.11	946	156			
250.12	981	165			
250.13	1,016	175			
250.14	1,051	186			
250.15	1,086	196			
250.16	1,121	207			
250.17	1,156	219			
250.18	1,191	230			
250.19	1,226	242			
250.20	1,261	255			
250.21	1,305	268			
250.22	1,349	281			
250.23	1,393	295			
250.24	1,438	309			
250.25	1,482	323			
250.26	1,526	339			
250.27	1,570	354			
250.28	1,614	370			
250.29	1,658	386			
250.30	1,703	403			
250.31	1,747	420			
250.32	1,791	438			

Stage-Area-Storage for Pond HW2:

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
253.00	0	253.53	0	254.06	0
253.01	0	253.54	0	254.07	0
253.02	0	253.55	0	254.08	0
253.03	0	253.56	0	254.09	0
253.04	0	253.57	0	254.10	0
253.05	0	253.58	0	254.11	0
253.06	0	253.59	0	254.12	0
253.07	0	253.60	0	254.13	0
253.08	0	253.61	0	254.14	0
253.09	0	253.62	0	254.15	0
253.10	0	253.63	0	254.16	0
253.11	0	253.64	0	254.17	0
253.12	0	253.65	0	254.18	0
253.13	0	253.66	0	254.19	0
253.14	0	253.67	0	254.20	0
253.15	0	253.68	0	254.21	0
253.16	0	253.69	0	254.22	0
253.17	0	253.70	0	254.23	0
253.18	0	253.71	0	254.24	0
253.19	0	253.72	0	254.25	0
253.20	0	253.73	0		
253.21	0	253.74	0		
253.22	0	253.75	0		
253.23	0	253.76	0		
253.24	0	253.77	0		
253.25	0	253.78	0		
253.26	0	253.79	0		
253.27	0	253.80	0		
253.28	0	253.81	0		
253.29	0	253.82	0		
253.30	0	253.83	0		
253.31	0	253.84	0		
253.32	0	253.85	0		
253.33	0	253.86	0		
253.34	0	253.87	0		
253.35	0	253.88	0		
253.36	0	253.89	0		
253.37	0	253.90	0		
253.38	0	253.91	0		
253.39	0	253.92	0		
253.40	0	253.93	0		
253.41	0	253.94	0		
253.42	0	253.95	0		
253.43	0	253.96	0		
253.44	0	253.97	0		
253.45	0	253.98	0		
253.46	0	253.99	0		
253.47	0	254.00	0		
253.48	0	254.01	0		
253.49	0	254.02	0		
253.50	0	254.03	0		
253.51	0	254.04	0		
253.52	0	254.05	0		

Stage-Area-Storage for Pond IB1: Infiltration Basin \#1

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface $(\mathrm{sq}-\mathrm{ft})$	Storage (cubic-feet)
247.00	8,532	0	249.65	12,837	28,157
247.05	8,606	428	249.70	12,925	28,801
247.10	8,681	861	249.75	13,014	29,449
247.15	8,755	1,297	249.80	13,103	30,102
247.20	8,830	1,736	249.85	13,192	30,759
247.25	8,906	2,180	249.90	13,281	31,421
247.30	8,981	2,627	249.95	13,371	32,088
247.35	9,057	3,078	250.00	13,461	32,758
247.40	9,134	3,532			
247.45	9,210	3,991			
247.50	9,287	4,454			
247.55	9,365	4,920			
247.60	9,442	5,390			
247.65	9,520	5,864			
247.70	9,599	6,342			
247.75	9,677	6,824			
247.80	9,756	7,310			
247.85	9,835	7,800			
247.90	9,915	8,293			
247.95	9,995	8,791			
248.00	10,075	9,293			
248.05	10,154	9,799			
248.10	10,234	10,308			
248.15	10,314	10,822			
248.20	10,394	11,340			
248.25	10,474	11,861			
248.30	10,555	12,387			
248.35	10,636	12,917			
248.40	10,717	13,451			
248.45	10,799	13,989			
248.50	10,881	14,531			
248.55	10,963	15,077			
248.60	11,046	15,627			
248.65	11,129	16,181			
248.70	11,212	16,740			
248.75	11,296	17,302			
248.80	11,379	17,869			
248.85	11,464	18,440			
248.90	11,548	19,016			
248.95	11,633	19,595			
249.00	11,718	20,179			
249.05	11,802	20,767			
249.10	11,887	21,359			
249.15	11,972	21,956			
249.20	12,057	22,556			
249.25	12,142	23,161			
249.30	12,228	23,771			
249.35	12,314	24,384			
249.40	12,401	25,002			
249.45	12,487	25,624			
249.50	12,574	26,251			
249.55	12,662	26,882			
249.60	12,749	27,517			

Stage-Area-Storage for Pond SIS1: Stormtech

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
247.75	1,242	0	250.40	1,242	2,204
247.80	1,242	25	250.45	1,242	2,237
247.85	1,242	50	250.50	1,242	2,269
247.90	1,242	75	250.55	1,242	2,299
247.95	1,242	99	250.60	1,242	2,327
248.00	1,242	124	250.65	1,242	2,354
248.05	1,242	150	250.70	1,242	2,381
248.10	1,242	175	250.75	1,242	2,407
248.15	1,242	201	250.80	1,242	2,432
248.20	1,242	226	250.85	1,242	2,456
248.25	1,242	252	250.90	1,242	2,481
248.30	1,242	302	250.95	1,242	2,506
248.35	1,242	353	251.00	1,242	2,531
248.40	1,242	404	251.05	1,242	2,556
248.45	1,242	455	251.10	1,242	2,581
248.50	1,242	505	251.15	1,242	2,605
248.55	1,242	556	251.20	1,242	2,630
248.60	1,242	606	251.25	1,242	2,655
248.65	1,242	656			
248.70	1,242	706			
248.75	1,242	755			
248.80	1,242	805			
248.85	1,242	854			
248.90	1,242	903			
248.95	1,242	952			
249.00	1,242	1,000			
249.05	1,242	1,048			
249.10	1,242	1,096			
249.15	1,242	1,144			
249.20	1,242	1,192			
249.25	1,242	1,239			
249.30	1,242	1,286			
249.35	1,242	1,332			
249.40	1,242	1,379			
249.45	1,242	1,424			
249.50	1,242	1,470			
249.55	1,242	1,515			
249.60	1,242	1,560			
249.65	1,242	1,604			
249.70	1,242	1,648			
249.75	1,242	1,692			
249.80	1,242	1,735			
249.85	1,242	1,778			
249.90	1,242	1,820			
249.95	1,242	1,861			
250.00	1,242	1,902			
250.05	1,242	1,942			
250.10	1,242	1,982			
250.15	1,242	2,021			
250.20	1,242	2,059			
250.25	1,242	2,097			
250.30	1,242	2,134			
250.35	1,242	2,169			

Stage-Area-Storage for Pond SIS2:

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)
249.00	1,735	0	251.65	1,748	3,056
249.05	1,735	35	251.70	1,748	3,102
249.10	1,735	69	251.75	1,748	3,146
249.15	1,735	104	251.80	1,748	3,188
249.20	1,735	139	251.85	1,748	3,227
249.25	1,735	174	251.90	1,748	3,265
249.30	1,735	208	251.95	1,748	3,302
249.35	1,735	243	252.00	1,748	3,338
249.40	1,735	278	252.05	1,748	3,373
249.45	1,735	312	252.10	1,748	3,409
249.50	1,735	347	252.15	1,748	3,444
249.55	1,735	418	252.20	1,748	3,479
249.60	1,735	488	252.25	1,748	3,515
249.65	1,735	558	252.30	1,748	3,550
249.70	1,735	628	252.35	1,748	3,585
249.75	1,735	698	252.40	1,748	3,621
249.80	1,735	768	252.45	1,748	3,656
249.85	1,735	837	252.50	1,748	3,691
249.90	1,735	907	252.55	1,748	3,692
249.95	1,735	976	252.60	1,748	3,692
250.00	1,735	1,044	252.65	1,748	3,693
250.05	1,735	1,113	252.70	1,748	3,694
250.10	1,735	1,181	252.75	1,748	3,694
250.15	1,735	1,249	252.80	1,748	3,695
250.20	1,735	1,316	252.85	1,748	3,696
250.25	1,735	1,383	252.90	1,748	3,696
250.30	1,735	1,450	252.95	1,748	3,697
250.35	1,735	1,516	253.00	1,748	3,697
250.40	1,735	1,582	253.05	1,748	3,698
250.45	1,735	1,648	253.10	1,748	3,699
250.50	1,735	1,713	253.15	1,748	3,699
250.55	1,735	1,778	253.20	1,748	3,700
250.60	1,735	1,843	253.25	1,748	3,701
250.65	1,735	1,907	253.30	1,748	3,701
250.70	1,735	1,970	253.35	1,748	3,702
250.75	1,735	2,033	253.40	1,748	3,703
250.80	1,748	2,095	253.45	1,748	3,703
250.85	1,748	2,158	253.50	1,748	3,704
250.90	1,748	2,220	253.55	1,748	3,704
250.95	1,748	2,281	253.60	1,748	3,705
251.00	1,748	2,342	253.65	1,748	3,706
251.05	1,748	2,402	253.70	1,748	3,706
251.10	1,748	2,462	253.75	1,748	3,707
251.15	1,748	2,520	253.80	1,748	3,708
251.20	1,748	2,578			
251.25	1,748	2,635			
251.30	1,748	2,691			
251.35	1,748	2,747			
251.40	1,748	2,801			
251.45	1,748	2,855			
251.50	1,748	2,907			
251.55	1,748	2,958			
251.60	1,748	3,008			

Stage-Area-Storage for Pond AD:

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
248.60	0	249.66	0	250.72	0
248.62	0	249.68	0	250.74	0
248.64	0	249.70	0		
248.66	0	249.72	0		
248.68	0	249.74	0		
248.70	0	249.76	0		
248.72	0	249.78	0		
248.74	0	249.80	0		
248.76	0	249.82	0		
248.78	0	249.84	0		
248.80	0	249.86	0		
248.82	0	249.88	0		
248.84	0	249.90	0		
248.86	0	249.92	0		
248.88	0	249.94	0		
248.90	0	249.96	0		
248.92	0	249.98	0		
248.94	0	250.00	0		
248.96	0	250.02	0		
248.98	0	250.04	0		
249.00	0	250.06	0		
249.02	0	250.08	0		
249.04	0	250.10	0		
249.06	0	250.12	0		
249.08	0	250.14	0		
249.10	0	250.16	0		
249.12	0	250.18	0		
249.14	0	250.20	0		
249.16	0	250.22	0		
249.18	0	250.24	0		
249.20	0	250.26	0		
249.22	0	250.28	0		
249.24	0	250.30	0		
249.26	0	250.32	0		
249.28	0	250.34	0		
249.30	0	250.36	0		
249.32	0	250.38	0		
249.34	0	250.40	0		
249.36	0	250.42	0		
249.38	0	250.44	0		
249.40	0	250.46	0		
249.42	0	250.48	0		
249.44	0	250.50	0		
249.46	0	250.52	0		
249.48	0	250.54	0		
249.50	0	250.56	0		
249.52	0	250.58	0		
249.54	0	250.60	0		
249.56	0	250.62	0		
249.58	0	250.64	0		
249.60	0	250.66	0		
249.62	0	250.68	0		
249.64	0	250.70	0		

Stage-Area-Storage for Pond CB1: CB\#1

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
249.00	0	250.06	0	251.12	0
249.02	0	250.08	0	251.14	0
249.04	0	250.10	0	251.16	0
249.06	0	250.12	0	251.18	0
249.08	0	250.14	0	251.20	0
249.10	0	250.16	0	251.22	0
249.12	0	250.18	0	251.24	0
249.14	0	250.20	0	251.26	0
249.16	0	250.22	0	251.28	0
249.18	0	250.24	0	251.30	0
249.20	0	250.26	0	251.32	0
249.22	0	250.28	0	251.34	0
249.24	0	250.30	0	251.36	0
249.26	0	250.32	0	251.38	0
249.28	0	250.34	0	251.40	0
249.30	0	250.36	0	251.42	0
249.32	0	250.38	0	251.44	0
249.34	0	250.40	0	251.46	0
249.36	0	250.42	0	251.48	0
249.38	0	250.44	0	251.50	0
249.40	0	250.46	0		
249.42	0	250.48	0		
249.44	0	250.50	0		
249.46	0	250.52	0		
249.48	0	250.54	0		
249.50	0	250.56	0		
249.52	0	250.58	0		
249.54	0	250.60	0		
249.56	0	250.62	0		
249.58	0	250.64	0		
249.60	0	250.66	0		
249.62	0	250.68	0		
249.64	0	250.70	0		
249.66	0	250.72	0		
249.68	0	250.74	0		
249.70	0	250.76	0		
249.72	0	250.78	0		
249.74	0	250.80	0		
249.76	0	250.82	0		
249.78	0	250.84	0		
249.80	0	250.86	0		
249.82	0	250.88	0		
249.84	0	250.90	0		
249.86	0	250.92	0		
249.88	0	250.94	0		
249.90	0	250.96	0		
249.92	0	250.98	0		
249.94	0	251.00	0		
249.96	0	251.02	0		
249.98	0	251.04	0		
250.00	0	251.06	0		
250.02	0	251.08	0		
250.04	0	251.10	0		

Stage-Area-Storage for Pond CB2:

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array} \\ \hline \end{array}$	Storage (cubic-feet)
251.20	0	252.26	0	253.32	0
251.22	0	252.28	0	253.34	0
251.24	0	252.30	0	253.36	0
251.26	0	252.32	0	253.38	0
251.28	0	252.34	0	253.40	0
251.30	0	252.36	0	253.42	0
251.32	0	252.38	0	253.44	0
251.34	0	252.40	0	253.46	0
251.36	0	252.42	0	253.48	0
251.38	0	252.44	0	253.50	0
251.40	0	252.46	0	253.52	0
251.42	0	252.48	0	253.54	0
251.44	0	252.50	0	253.56	0
251.46	0	252.52	0	253.58	0
251.48	0	252.54	0	253.60	0
251.50	0	252.56	0	253.62	0
251.52	0	252.58	0	253.64	0
251.54	0	252.60	0	253.66	0
251.56	0	252.62	0	253.68	0
251.58	0	252.64	0	253.70	0
251.60	0	252.66	0	253.72	0
251.62	0	252.68	0	253.74	0
251.64	0	252.70	0	253.76	0
251.66	0	252.72	0	253.78	0
251.68	0	252.74	0	253.80	0
251.70	0	252.76	0	253.82	0
251.72	0	252.78	0	253.84	0
251.74	0	252.80	0	253.86	0
251.76	0	252.82	0	253.88	0
251.78	0	252.84	0	253.90	0
251.80	0	252.86	0	253.92	0
251.82	0	252.88	0	253.94	0
251.84	0	252.90	0	253.96	0
251.86	0	252.92	0	253.98	0
251.88	0	252.94	0	254.00	0
251.90	0	252.96	0	254.02	0
251.92	0	252.98	0		
251.94	0	253.00	0		
251.96	0	253.02	0		
251.98	0	253.04	0		
252.00	0	253.06	0		
252.02	0	253.08	0		
252.04	0	253.10	0		
252.06	0	253.12	0		
252.08	0	253.14	0		
252.10	0	253.16	0		
252.12	0	253.18	0		
252.14	0	253.20	0		
252.16	0	253.22	0		
252.18	0	253.24	0		
252.20	0	253.26	0		
252.22	0	253.28	0		
252.24	0	253.30	0		

Stage-Area-Storage for Pond CB4:

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array} \\ \hline \end{array}$	Storage (cubic-feet)
247.83	0	248.89	0	249.95	0
247.85	0	248.91	0	249.97	0
247.87	0	248.93	0	249.99	0
247.89	0	248.95	0	250.01	0
247.91	0	248.97	0	250.03	0
247.93	0	248.99	0	250.05	0
247.95	0	249.01	0	250.07	0
247.97	0	249.03	0	250.09	0
247.99	0	249.05	0	250.11	0
248.01	0	249.07	0	250.13	0
248.03	0	249.09	0	250.15	0
248.05	0	249.11	0	250.17	0
248.07	0	249.13	0	250.19	0
248.09	0	249.15	0	250.21	0
248.11	0	249.17	0	250.23	0
248.13	0	249.19	0	250.25	0
248.15	0	249.21	0	250.27	0
248.17	0	249.23	0	250.29	0
248.19	0	249.25	0	250.31	0
248.21	0	249.27	0	250.33	0
248.23	0	249.29	0	250.35	0
248.25	0	249.31	0	250.37	0
248.27	0	249.33	0	250.39	0
248.29	0	249.35	0	250.41	0
248.31	0	249.37	0	250.43	0
248.33	0	249.39	0	250.45	0
248.35	0	249.41	0	250.47	0
248.37	0	249.43	0	250.49	0
248.39	0	249.45	0	250.51	0
248.41	0	249.47	0	250.53	0
248.43	0	249.49	0	250.55	0
248.45	0	249.51	0	250.57	0
248.47	0	249.53	0	250.59	0
248.49	0	249.55	0	250.61	0
248.51	0	249.57	0	250.63	0
248.53	0	249.59	0	250.65	0
248.55	0	249.61	0	250.67	0
248.57	0	249.63	0	250.69	0
248.59	0	249.65	0		
248.61	0	249.67	0		
248.63	0	249.69	0		
248.65	0	249.71	0		
248.67	0	249.73	0		
248.69	0	249.75	0		
248.71	0	249.77	0		
248.73	0	249.79	0		
248.75	0	249.81	0		
248.77	0	249.83	0		
248.79	0	249.85	0		
248.81	0	249.87	0		
248.83	0	249.89	0		
248.85	0	249.91	0		
248.87	0	249.93	0		

Stage-Area-Storage for Pond CB5:

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array} \\ \hline \end{array}$	Storage (cubic-feet)
250.30	0	251.36	0	252.42	0
250.32	0	251.38	0	252.44	0
250.34	0	251.40	0	252.46	0
250.36	0	251.42	0	252.48	0
250.38	0	251.44	0	252.50	0
250.40	0	251.46	0	252.52	0
250.42	0	251.48	0	252.54	0
250.44	0	251.50	0	252.56	0
250.46	0	251.52	0	252.58	0
250.48	0	251.54	0	252.60	0
250.50	0	251.56	0	252.62	0
250.52	0	251.58	0		
250.54	0	251.60	0		
250.56	0	251.62	0		
250.58	0	251.64	0		
250.60	0	251.66	0		
250.62	0	251.68	0		
250.64	0	251.70	0		
250.66	0	251.72	0		
250.68	0	251.74	0		
250.70	0	251.76	0		
250.72	0	251.78	0		
250.74	0	251.80	0		
250.76	0	251.82	0		
250.78	0	251.84	0		
250.80	0	251.86	0		
250.82	0	251.88	0		
250.84	0	251.90	0		
250.86	0	251.92	0		
250.88	0	251.94	0		
250.90	0	251.96	0		
250.92	0	251.98	0		
250.94	0	252.00	0		
250.96	0	252.02	0		
250.98	0	252.04	0		
251.00	0	252.06	0		
251.02	0	252.08	0		
251.04	0	252.10	0		
251.06	0	252.12	0		
251.08	0	252.14	0		
251.10	0	252.16	0		
251.12	0	252.18	0		
251.14	0	252.20	0		
251.16	0	252.22	0		
251.18	0	252.24	0		
251.20	0	252.26	0		
251.22	0	252.28	0		
251.24	0	252.30	0		
251.26	0	252.32	0		
251.28	0	252.34	0		
251.30	0	252.36	0		
251.32	0	252.38	0		
251.34	0	252.40	0		

Stage-Area-Storage for Pond CB6:

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
248.30	0	249.36	0	250.42	0
248.32	0	249.38	0	250.44	0
248.34	0	249.40	0	250.46	0
248.36	0	249.42	0	250.48	0
248.38	0	249.44	0	250.50	0
248.40	0	249.46	0	250.52	0
248.42	0	249.48	0	250.54	0
248.44	0	249.50	0	250.56	0
248.46	0	249.52	0	250.58	0
248.48	0	249.54	0	250.60	0
248.50	0	249.56	0	250.62	0
248.52	0	249.58	0	250.64	0
248.54	0	249.60	0	250.66	0
248.56	0	249.62	0	250.68	0
248.58	0	249.64	0	250.70	0
248.60	0	249.66	0	250.72	0
248.62	0	249.68	0	250.74	0
248.64	0	249.70	0	250.76	0
248.66	0	249.72	0	250.78	0
248.68	0	249.74	0	250.80	0
248.70	0	249.76	0	250.82	0
248.72	0	249.78	0		
248.74	0	249.80	0		
248.76	0	249.82	0		
248.78	0	249.84	0		
248.80	0	249.86	0		
248.82	0	249.88	0		
248.84	0	249.90	0		
248.86	0	249.92	0		
248.88	0	249.94	0		
248.90	0	249.96	0		
248.92	0	249.98	0		
248.94	0	250.00	0		
248.96	0	250.02	0		
248.98	0	250.04	0		
249.00	0	250.06	0		
249.02	0	250.08	0		
249.04	0	250.10	0		
249.06	0	250.12	0		
249.08	0	250.14	0		
249.10	0	250.16	0		
249.12	0	250.18	0		
249.14	0	250.20	0		
249.16	0	250.22	0		
249.18	0	250.24	0		
249.20	0	250.26	0		
249.22	0	250.28	0		
249.24	0	250.30	0		
249.26	0	250.32	0		
249.28	0	250.34	0		
249.30	0	250.36	0		
249.32	0	250.38	0		
249.34	0	250.40	0		

Stage-Area-Storage for Pond CB7:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0	251.05	0
248.45	0	251.10	0
248.50	0	251.15	0
248.55	0	251.20	0
248.60	0	251.25	0
248.65	0	251.30	0
248.70	0	251.35	0
248.75	0	251.40	0
248.80	0	251.45	0
248.85	0	251.50	0
248.90	0	251.55	0
248.95	0	251.60	0
249.00	0	251.65	0
249.05	0	251.70	0
249.10	0	251.75	0
249.15	0	251.80	0
249.20	0	251.85	0
249.25	0	251.90	0
249.30	0	251.95	0
249.35	0	252.00	0
249.40	0	252.05	0
249.45	0	252.10	0
249.50	0	252.15	0
249.55	0	252.20	0
249.60	0	252.25	0
249.65	0	252.30	0
249.70	0	252.35	0
249.75	0	252.40	0
249.80	0	252.45	0
249.85	0	252.50	0
249.90	0	252.55	0
249.95	0	252.60	0
250.00	0	252.65	0
250.05	0	252.70	0
250.10	0	252.75	0
250.15	0	252.80	0
250.20	0	252.85	0
250.25	0	252.90	0
250.30	0	252.95	0
250.35	0	253.00	0
250.40	0		
250.45	0		
250.50	0		
250.55	0		
250.60	0		

Stage-Area-Storage for Pond DMH1:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
248.28	0	250.93	0
248.33	0	250.98	0
248.38	0	251.03	0
248.43	0	251.08	0
248.48	0	251.13	0
248.53	0	251.18	0
248.58	0	251.23	0
248.63	0	251.28	0
248.68	0	251.33	0
248.73	0	251.38	0
248.78	0	251.43	0
248.83	0	251.48	0
248.88	0	251.53	0
248.93	0	251.58	0
248.98	0	251.63	0
249.03	0	251.68	0
249.08	0	251.73	0
249.13	0	251.78	0
249.18	0	251.83	0
249.23	0	251.88	0
249.28	0	251.93	0
249.33	0	251.98	0
249.38	0	252.03	0
249.43	0	252.08	0
249.48	0	252.13	0
249.53	0	252.18	0
249.58	0	252.23	0
249.63	0	252.28	0
249.68	0	252.33	0
249.73	0	252.38	0
249.78	0	252.43	0
249.83	0	252.48	0
249.88	0		
249.93	0		
249.98	0		
250.03	0		
250.08	0		
250.13	0		
250.18	0		
250.23	0		
250.28	0		
250.33	0		
250.38	0		
250.43	0		
250.48	0		
250.53	0		
250.58	0		
250.63	0		
250.68	0		
250.73	0		
250.78	0		
250.83	0		
250.88	0		

Stage-Area-Storage for Pond DMH3:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
247.45	0	250.10	0
247.50	0	250.15	0
247.55	0	250.20	0
247.60	0	250.25	0
247.65	0	250.30	0
247.70	0	250.35	0
247.75	0	250.40	0
247.80	0	250.45	0
247.85	0	250.50	0
247.90	0	250.55	0
247.95	0	250.60	0
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0	251.05	0
248.45	0	251.10	0
248.50	0	251.15	0
248.55	0	251.20	0
248.60	0	251.25	0
248.65	0	251.30	0
248.70	0	251.35	0
248.75	0	251.40	0
248.80	0	251.45	0
248.85	0	251.50	0
248.90	0	251.55	0
248.95	0	251.60	0
249.00	0	251.65	0
249.05	0	251.70	0
249.10	0	251.75	0
249.15	0	251.80	0
249.20	0	251.85	0
249.25	0	251.90	0
249.30	0	251.95	0
249.35	0		
249.40	0		
249.45	0		
249.50	0		
249.55	0		
249.60	0		
249.65	0		
249.70	0		
249.75	0		
249.80	0		
249.85	0		
249.90	0		
249.95	0		
250.00	0		
250.05	0		

Stage-Area-Storage for Pond DMH4:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
246.60	0	249.25	0
246.65	0	249.30	0
246.70	0	249.35	0
246.75	0	249.40	0
246.80	0	249.45	0
246.85	0	249.50	0
246.90	0	249.55	0
246.95	0	249.60	0
247.00	0	249.65	0
247.05	0	249.70	0
247.10	0	249.75	0
247.15	0	249.80	0
247.20	0	249.85	0
247.25	0	249.90	0
247.30	0	249.95	0
247.35	0	250.00	0
247.40	0	250.05	0
247.45	0	250.10	0
247.50	0	250.15	0
247.55	0	250.20	0
247.60	0	250.25	0
247.65	0	250.30	0
247.70	0	250.35	0
247.75	0	250.40	0
247.80	0	250.45	0
247.85	0	250.50	0
247.90	0	250.55	0
247.95	0	250.60	0
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0		
248.45	0		
248.50	0		
248.55	0		
248.60	0		
248.65	0		
248.70	0		
248.75	0		
248.80	0		
248.85	0		
248.90	0		
248.95	0		
249.00	0		
249.05	0		
249.10	0		
249.15	0		
249.20	0		

Stage-Area-Storage for Pond DMH5:

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r}\begin{array}{r}\text { Elevation } \\ \text { (feet) }\end{array} \\ \hline\end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r}\begin{array}{r}\text { Elevation } \\ \text { (feet) }\end{array} \\ \hline\end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
251.65	0	252.71	0	253.77	0
251.67	0	252.73	0	253.79	0
251.69	0	252.75	0	253.81	0
251.71	0	252.77	0	253.83	0
251.73	0	252.79	0	253.85	0
251.75	0	252.81	0	253.87	0
251.77	0	252.83	0	253.89	0
251.79	0	252.85	0	253.91	0
251.81	0	252.87	0	253.93	0
251.83	0	252.89	0	253.95	0
251.85	0	252.91	0	253.97	0
251.87	0	252.93	0	253.99	0
251.89	0	252.95	0		
251.91	0	252.97	0		
251.93	0	252.99	0		
251.95	0	253.01	0		
251.97	0	253.03	0		
251.99	0	253.05	0		
252.01	0	253.07	0		
252.03	0	253.09	0		
252.05	0	253.11	0		
252.07	0	253.13	0		
252.09	0	253.15	0		
252.11	0	253.17	0		
252.13	0	253.19	0		
252.15	0	253.21	0		
252.17	0	253.23	0		
252.19	0	253.25	0		
252.21	0	253.27	0		
252.23	0	253.29	0		
252.25	0	253.31	0		
252.27	0	253.33	0		
252.29	0	253.35	0		
252.31	0	253.37	0		
252.33	0	253.39	0		
252.35	0	253.41	0		
252.37	0	253.43	0		
252.39	0	253.45	0		
252.41	0	253.47	0		
252.43	0	253.49	0		
252.45	0	253.51	0		
252.47	0	253.53	0		
252.49	0	253.55	0		
252.51	0	253.57	0		
252.53	0	253.59	0		
252.55	0	253.61	0		
252.57	0	253.63	0		
252.59	0	253.65	0		
252.61	0	253.67	0		
252.63	0	253.69	0		
252.65	0	253.71	0		
252.67	0	253.73	0		
252.69	0	253.75	0		

Stage-Area-Storage for Pond DMH6:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
249.71	0	252.36	0
249.76	0	252.41	0
249.81	0	252.46	0
249.86	0	252.51	0
249.91	0	252.56	0
249.96	0	252.61	0
250.01	0	252.66	0
250.06	0	252.71	0
250.11	0	252.76	0
250.16	0	252.81	0
250.21	0	252.86	0
250.26	0	252.91	0
250.31	0		
250.36	0		
250.41	0		
250.46	0		
250.51	0		
250.56	0		
250.61	0		
250.66	0		
250.71	0		
250.76	0		
250.81	0		
250.86	0		
250.91	0		
250.96	0		
251.01	0		
251.06	0		
251.11	0		
251.16	0		
251.21	0		
251.26	0		
251.31	0		
251.36	0		
251.41	0		
251.46	0		
251.51	0		
251.56	0		
251.61	0		
251.66	0		
251.71	0		
251.76	0		
251.81	0		
251.86	0		
251.91	0		
251.96	0		
252.01	0		
252.06	0		
252.11	0		
252.16	252.21	0	
252.26	0		
252.31			
	0		

Stage-Area-Storage for Pond DMH7:

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
247.60	0	250.25	0
247.65	0	250.30	0
247.70	0	250.35	0
247.75	0	250.40	0
247.80	0	250.45	0
247.85	0	250.50	0
247.90	0	250.55	0
247.95	0	250.60	0
248.00	0	250.65	0
248.05	0	250.70	0
248.10	0	250.75	0
248.15	0	250.80	0
248.20	0	250.85	0
248.25	0	250.90	0
248.30	0	250.95	0
248.35	0	251.00	0
248.40	0	251.05	0
248.45	0	251.10	0
248.50	0	251.15	0
248.55	0	251.20	0
248.60	0	251.25	0
248.65	0		
248.70	0		
248.75	0		
248.80	0		
248.85	0		
248.90	0		
248.95	0		
249.00	0		
249.05	0		
249.10	0		
249.15	0		
249.20	0		
249.25	0		
249.30	0		
249.35	0		
249.40	0		
249.45	0		
249.50	0		
249.55	0		
249.60	0		
249.65	0		
249.70	0		
249.75	0		
249.80	0		
249.85	0		
249.90	0		
249.95	0		
250.00	0		
250.05	0		
250.10	0		
250.15	250.20		
	0		

Stage-Area-Storage for Pond EX: Existing Abutter Depression

$\begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array}$	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
249.80	164	0	250.33	1,835	456
249.81	184	2	250.34	1,879	475
249.82	204	4	250.35	1,923	494
249.83	224	6	250.36	1,967	513
249.84	244	8	250.37	2,012	533
249.85	264	11	250.38	2,056	553
249.86	283	13	250.39	2,100	574
249.87	303	16	250.40	2,144	595
249.88	323	19	250.41	2,193	617
249.89	343	23	250.42	2,242	639
249.90	363	26	250.43	2,291	662
249.91	383	30	250.44	2,341	685
249.92	403	34	250.45	2,390	709
249.93	423	38	250.46	2,439	733
249.94	443	42	250.47	2,488	758
249.95	463	47	250.48	2,537	783
249.96	482	52	250.49	2,586	808
249.97	502	57	250.50	2,636	834
249.98	522	62	250.51	2,685	861
249.99	542	67	250.52	2,734	888
250.00	562	73	250.53	2,783	916
250.01	597	78	250.54	2,832	944
250.02	632	85	250.55	2,881	972
250.03	667	91	250.56	2,930	1,001
250.04	702	98	250.57	2,980	1,031
250.05	737	105	250.58	3,029	1,061
250.06	772	113	250.59	3,078	1,091
250.07	807	121	250.60	3,127	1,122
250.08	842	129			
250.09	877	137			
250.10	912	146			
250.11	946	156			
250.12	981	165			
250.13	1,016	175			
250.14	1,051	186			
250.15	1,086	196			
250.16	1,121	207			
250.17	1,156	219			
250.18	1,191	230			
250.19	1,226	242			
250.20	1,261	255			
250.21	1,305	268			
250.22	1,349	281			
250.23	1,393	295			
250.24	1,438	309			
250.25	1,482	323			
250.26	1,526	339			
250.27	1,570	354			
250.28	1,614	370			
250.29	1,658	386			
250.30	1,703	403			
250.31	1,747	420			
250.32	1,791	438			

Stage-Area-Storage for Pond HW2:

$\begin{array}{r} \text { Elevation } \\ \quad(\text { feet }) \\ \hline \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)
253.00	0	253.53	0	254.06	0
253.01	0	253.54	0	254.07	0
253.02	0	253.55	0	254.08	0
253.03	0	253.56	0	254.09	0
253.04	0	253.57	0	254.10	0
253.05	0	253.58	0	254.11	0
253.06	0	253.59	0	254.12	0
253.07	0	253.60	0	254.13	0
253.08	0	253.61	0	254.14	0
253.09	0	253.62	0	254.15	0
253.10	0	253.63	0	254.16	0
253.11	0	253.64	0	254.17	0
253.12	0	253.65	0	254.18	0
253.13	0	253.66	0	254.19	0
253.14	0	253.67	0	254.20	0
253.15	0	253.68	0	254.21	0
253.16	0	253.69	0	254.22	0
253.17	0	253.70	0	254.23	0
253.18	0	253.71	0	254.24	0
253.19	0	253.72	0	254.25	0
253.20	0	253.73	0		
253.21	0	253.74	0		
253.22	0	253.75	0		
253.23	0	253.76	0		
253.24	0	253.77	0		
253.25	0	253.78	0		
253.26	0	253.79	0		
253.27	0	253.80	0		
253.28	0	253.81	0		
253.29	0	253.82	0		
253.30	0	253.83	0		
253.31	0	253.84	0		
253.32	0	253.85	0		
253.33	0	253.86	0		
253.34	0	253.87	0		
253.35	0	253.88	0		
253.36	0	253.89	0		
253.37	0	253.90	0		
253.38	0	253.91	0		
253.39	0	253.92	0		
253.40	0	253.93	0		
253.41	0	253.94	0		
253.42	0	253.95	0		
253.43	0	253.96	0		
253.44	0	253.97	0		
253.45	0	253.98	0		
253.46	0	253.99	0		
253.47	0	254.00	0		
253.48	0	254.01	0		
253.49	0	254.02	0		
253.50	0	254.03	0		
253.51	0	254.04	0		
253.52	0	254.05	0		

Stage-Area-Storage for Pond IB1: Infiltration Basin \#1

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
247.00	8,532	0	249.65	12,837	28,157
247.05	8,606	428	249.70	12,925	28,801
247.10	8,681	861	249.75	13,014	29,449
247.15	8,755	1,297	249.80	13,103	30,102
247.20	8,830	1,736	249.85	13,192	30,759
247.25	8,906	2,180	249.90	13,281	31,421
247.30	8,981	2,627	249.95	13,371	32,088
247.35	9,057	3,078	250.00	13,461	32,758
247.40	9,134	3,532			
247.45	9,210	3,991			
247.50	9,287	4,454			
247.55	9,365	4,920			
247.60	9,442	5,390			
247.65	9,520	5,864			
247.70	9,599	6,342			
247.75	9,677	6,824			
247.80	9,756	7,310			
247.85	9,835	7,800			
247.90	9,915	8,293			
247.95	9,995	8,791			
248.00	10,075	9,293			
248.05	10,154	9,799			
248.10	10,234	10,308			
248.15	10,314	10,822			
248.20	10,394	11,340			
248.25	10,474	11,861			
248.30	10,555	12,387			
248.35	10,636	12,917			
248.40	10,717	13,451			
248.45	10,799	13,989			
248.50	10,881	14,531			
248.55	10,963	15,077			
248.60	11,046	15,627			
248.65	11,129	16,181			
248.70	11,212	16,740			
248.75	11,296	17,302			
248.80	11,379	17,869			
248.85	11,464	18,440			
248.90	11,548	19,016			
248.95	11,633	19,595			
249.00	11,718	20,179			
249.05	11,802	20,767			
249.10	11,887	21,359			
249.15	11,972	21,956			
249.20	12,057	22,556			
249.25	12,142	23,161			
249.30	12,228	23,771			
249.35	12,314	24,384			
249.40	12,401	25,002			
249.45	12,487	25,624			
249.50	12,574	26,251			
249.55	12,662	26,882			
249.60	12,749	27,517			

Stage-Area-Storage for Pond SIS1: Stormtech

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
247.75	1,242	0	250.40	1,242	2,204
247.80	1,242	25	250.45	1,242	2,237
247.85	1,242	50	250.50	1,242	2,269
247.90	1,242	75	250.55	1,242	2,299
247.95	1,242	99	250.60	1,242	2,327
248.00	1,242	124	250.65	1,242	2,354
248.05	1,242	150	250.70	1,242	2,381
248.10	1,242	175	250.75	1,242	2,407
248.15	1,242	201	250.80	1,242	2,432
248.20	1,242	226	250.85	1,242	2,456
248.25	1,242	252	250.90	1,242	2,481
248.30	1,242	302	250.95	1,242	2,506
248.35	1,242	353	251.00	1,242	2,531
248.40	1,242	404	251.05	1,242	2,556
248.45	1,242	455	251.10	1,242	2,581
248.50	1,242	505	251.15	1,242	2,605
248.55	1,242	556	251.20	1,242	2,630
248.60	1,242	606	251.25	1,242	2,655
248.65	1,242	656			
248.70	1,242	706			
248.75	1,242	755			
248.80	1,242	805			
248.85	1,242	854			
248.90	1,242	903			
248.95	1,242	952			
249.00	1,242	1,000			
249.05	1,242	1,048			
249.10	1,242	1,096			
249.15	1,242	1,144			
249.20	1,242	1,192			
249.25	1,242	1,239			
249.30	1,242	1,286			
249.35	1,242	1,332			
249.40	1,242	1,379			
249.45	1,242	1,424			
249.50	1,242	1,470			
249.55	1,242	1,515			
249.60	1,242	1,560			
249.65	1,242	1,604			
249.70	1,242	1,648			
249.75	1,242	1,692			
249.80	1,242	1,735			
249.85	1,242	1,778			
249.90	1,242	1,820			
249.95	1,242	1,861			
250.00	1,242	1,902			
250.05	1,242	1,942			
250.10	1,242	1,982			
250.15	1,242	2,021			
250.20	1,242	2,059			
250.25	1,242	2,097			
250.30	1,242	2,134			
250.35	1,242	2,169			

Stage-Area-Storage for Pond SIS2:

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)
249.00	1,735	0	251.65	1,748	3,056
249.05	1,735	35	251.70	1,748	3,102
249.10	1,735	69	251.75	1,748	3,146
249.15	1,735	104	251.80	1,748	3,188
249.20	1,735	139	251.85	1,748	3,227
249.25	1,735	174	251.90	1,748	3,265
249.30	1,735	208	251.95	1,748	3,302
249.35	1,735	243	252.00	1,748	3,338
249.40	1,735	278	252.05	1,748	3,373
249.45	1,735	312	252.10	1,748	3,409
249.50	1,735	347	252.15	1,748	3,444
249.55	1,735	418	252.20	1,748	3,479
249.60	1,735	488	252.25	1,748	3,515
249.65	1,735	558	252.30	1,748	3,550
249.70	1,735	628	252.35	1,748	3,585
249.75	1,735	698	252.40	1,748	3,621
249.80	1,735	768	252.45	1,748	3,656
249.85	1,735	837	252.50	1,748	3,691
249.90	1,735	907	252.55	1,748	3,692
249.95	1,735	976	252.60	1,748	3,692
250.00	1,735	1,044	252.65	1,748	3,693
250.05	1,735	1,113	252.70	1,748	3,694
250.10	1,735	1,181	252.75	1,748	3,694
250.15	1,735	1,249	252.80	1,748	3,695
250.20	1,735	1,316	252.85	1,748	3,696
250.25	1,735	1,383	252.90	1,748	3,696
250.30	1,735	1,450	252.95	1,748	3,697
250.35	1,735	1,516	253.00	1,748	3,697
250.40	1,735	1,582	253.05	1,748	3,698
250.45	1,735	1,648	253.10	1,748	3,699
250.50	1,735	1,713	253.15	1,748	3,699
250.55	1,735	1,778	253.20	1,748	3,700
250.60	1,735	1,843	253.25	1,748	3,701
250.65	1,735	1,907	253.30	1,748	3,701
250.70	1,735	1,970	253.35	1,748	3,702
250.75	1,735	2,033	253.40	1,748	3,703
250.80	1,748	2,095	253.45	1,748	3,703
250.85	1,748	2,158	253.50	1,748	3,704
250.90	1,748	2,220	253.55	1,748	3,704
250.95	1,748	2,281	253.60	1,748	3,705
251.00	1,748	2,342	253.65	1,748	3,706
251.05	1,748	2,402	253.70	1,748	3,706
251.10	1,748	2,462	253.75	1,748	3,707
251.15	1,748	2,520	253.80	1,748	3,708
251.20	1,748	2,578			
251.25	1,748	2,635			
251.30	1,748	2,691			
251.35	1,748	2,747			
251.40	1,748	2,801			
251.45	1,748	2,855			
251.50	1,748	2,907			
251.55	1,748	2,958			
251.60	1,748	3,008			

Appendix I - Mounding Calculations

Sheldon Meadow - Infiltration Basin 1

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length ($\mathrm{x}=\mathrm{y}$). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.
Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent units (e.g. feet \& days or inches \& hours)	Conversion Table			
Input Values			inch/hour		feet/day	
0.1650	\boldsymbol{R}	Recharge (infiltration) rate (feet/day)		0.67	1.33	
0.260	Sy	Specific yield, Sy (dimensionless, between 0 and 1)				
1.65	K	Horizontal hydraulic conductivity, Kh (feet/day)*		2.00	4.00	
47.500	\mathbf{x}	1/2 length of basin (x direction, in feet)				(USGS S
45.000	y	1/2 width of basin (y direction, in feet)	hours			$(\mathrm{ft} / \mathrm{d})$ is
1.000	t	duration of infiltration period (days)		36	1.50	hydraulic
15.000	hi(0)	initial thickness of saturated zone (feet)				
15.634	h(max)	maximum thickness of saturated zone (beneath center of basin at end of infiltration period)				
0.634	$\Delta \mathrm{h}$ (max)	maximum groundwater mounding (beneath center	at end	of in	peri	iod)

Ground-	Distance from
water	center of basin

Mounding, in in x direction, in

feet	feet
0.634	0
0.634	10
0.631	20
0.608	30
0.511	40
0.236	50
0.059	60
0.011	70
0.001	80
0.000	90

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Sheldon Meadow - Subsurface Infiltration System 1

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x , y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length ($x=y$). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.
Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)
Input Values

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Sheldon Meadow - Subsurface Infiltration System 2

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length ($x=y$). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.
Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

[^0]: *Evidence of maintenance (i.e. receipts) must be provided.

[^1]: *Evidence of maintenance (i.e. receipts) must be provided.

